
THE LOCAL COVER

TARA ABRISHAMI

Abstract. This exposition explains the local cover of a graph, an object introduced by
Diestel, Jacobs, Knappe, and Kurkofka in [1]. My aim is to help build intuition, motivate
the definition and properties, and give a (more-or-less) self-contained description of the local
cover that assumes only familiarity with graph theory as background.

Figure 1. A graph G and its local structure. (Figure from Jan Kurkofka.)
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1. Introduction

In graph theory, knowledge of the so-called “local structure” of a graph often proves to be
an insightful source of information. For example, several well-studied types of graphs, such as
certain random graphs or expander graphs, are often described as “locally tree-like.” In this
context, a graph is typically considered locally tree-like if every small-radius ball of the graph
looks like a tree.

Recently, Diestel, Jacobs, Knappe, and Kurkofka introduced a new way to define the “local
structure” of a graph [1]. Instead of defining the local structure of a graph by looking sepa-
rately into every small ball of a graph, they define a single graph, called the local cover, that
simultaneously witnesses the local structure everywhere. In this framework, a graph is locally
tree-like if and only if its local cover graph is a tree. An example illustrating a graph and its
local structure is shown in Fig. 1.

Defining the local structure of a graph through the local cover has a number of advantages.
One advantage is that the local cover has algebraic and topological properties in addition
to combinatorial ones, expanding the available tools to study the local structure. Another
advantage is that there is a natural way to use the local cover graph to also draw conclusions
about the global structure of a graph. Being able to use knowledge of local structure to draw
conclusions about global structure is a common goal in graph theory research, and the local
cover is designed to help facilitate this kind of local-global analysis.

In this writeup, I explain how the local cover graph is constructed and describe several
of its properties. My hope is that this document helps make the local cover more accessible
and inspires those who are interested to learn more and work with the local cover themselves.
Please feel welcome to email me if you have any thoughts or questions! This is still a draft,
and it will likely be updated in the future.

2. Overview and preliminary definitions

The key idea of the local cover is that it is the simplest possible graph that represents
the local structure of G everywhere. Because it’s the “simplest possible” with respect to this
property, it represents only the local structure of G: any global structure, i.e. structure not
witnessed locally somehow, is ignored by the local cover.

To explain in detail how we construct the local cover, we first need to understand what we
mean by “local structure.” Intuitively, something is “local” in a graph if it appears in a “small
part” of the graph. We can define a “small part” of a graph by using bounded-radius balls
around vertices. Given a graph G, a vertex v of G, and a parameter r, the (combinatorial)
ball of radius r/2 around v, denoted BG(v, r/2), is the subgraph of G with:

• vertex set the set of all vertices u of distance at most r/2 from v, and
• edge set the set of all edges uw such that d(u, v) + d(w, v) < r.

This definition of r/2-ball is chosen to mimic the definition of the metric ball of radius r/2
(if G is viewed as a 1-complex). The r/2-balls also interact with cycles in an important way:

Remark 1. Consider a cycle Ck of length k. Intuitively speaking, we want Ck to be “r-local”
for k ≤ r but not r-local for k > r. In other words, cycles of length at most r are “r-local
cycles,” whereas cycles of length greater than r are not “r-local.” A definition using closed
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neighborhoods cannot capture the full spectrum of cycles in this way. For instance, both C4

and C5 are contained in N2[v] for each of their vertices v but not in N [v] for any of their
vertices v, so closed neighborhoods alone cannot say that a C4 is “more local” than a C5. By
contrast, a C4 is contained in B(v, 4/2) for each of its vertices v, but a C5 is not contained in
B(v, 4/2) for any of its vertices v; see Fig. 2. So the combinatorial ball of radius 4/2 gives us
the precision to say that C4 is 4-local but C5 is not 4-local.

Figure 2. The 4/2-ball in a C4 and in a C5.

Now, given a graph G and parameter r, the r-local structure of G is the structure that
appears in the balls of radius r/2 in G.

At the moment, this definition gives us a collection of subgraphs of G, the r/2-balls, that
define its “local structure.” But what we want is a single graph that captures the local
structure everywhere. To do this, we use some tools from topology – specifically, the notion
of a covering.

3. Coverings

In the remainder of this writeup, we assume all graphs are simple and connected. Given a
graph G, a covering of G is a map p : C → G from a graph C to G such that:

• p is surjective: for every v ∈ V (G) there is c ∈ V (C) such that p(c) = v, and
• p is a local homeomorphism: p induces an isomorphism from C[N [v]] to G[N [p(v)]]

for every v ∈ V (C).
The map p is called a covering map of G, and the graph C is called a cover of G.

By the definition, every covering map of a graph G preserves neighborhoods everywhere.
This is already a step in the direction of preserving the local structure. What if we ask for
something stronger; namely, for the covering map to preserve r/2-balls everywhere? Then,
every local piece of G would appear as a subgraph in the cover. Conversely, every local piece
of the cover would correspond to a local piece of the original graph. In other words, the cover
would represent the local structure everywhere – just what we’re looking for.

Given graphs G and C, a covering p : C → G is r/2-ball-preserving if p induces an isomor-
phism from BC(v, r/2) to BG(p(v), r/2) for every vertex v of C. Now, we define the r-local
covering of G, denoted pr : Gr → G, to be the universal r/2-ball-preserving covering of G.
Here, universal means that for every r/2-ball-preserving covering s : C → G of G, there is an
r/2-ball-preserving covering q : Gr → C and pr = s ◦ q. See Fig. 3 to visualize the universal
property of pr.
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Figure 3. A diagram illustrating the universal property of Gr.

The property that pr is universal is essential to defining something that captures “only” the
local structure – otherwise, every graph automorphism gives an r/2-ball-preserving covering
(for example). Universality also gives that the r-local covering map pr is unique. It thus
follows that the graph Gr, which we call the r-local cover, is also unique. Finally, the fact
that pr is universal is what guarantees that the graph Gr is the “simplest possible” graph that
represents the local structure of G everywhere.

While the uniqueness is clear, it is not easy to see from this definition that the r-local
covering of a graph G always exists. When local coverings were first introduced in [1], they
were defined differently. (We will give the original definition later in this document; see
Theorem 4.) The definition in [1] is equivalent to the definition given above (by Lemmas
4.2 and 4.3 in [1]), but is based on ideas from algebraic topology. From that definition, it
is immediate that the r-local covering indeed always exists. So the r-local covering is well-
defined:

Theorem 1. For every graph G and positive integer r, the r-local covering pr : Gr → G exists
and is unique.

Next, we’ll review the relevant concepts and explain how the local covering can be defined
using algebraic topology.

4. Fundamental group of a graph

First, we need to understand the fundamental group of a graph. We follow the definitions
from [1].

Let G be a graph and let x0 be a fixed, arbitrary vertex of G called the base vertex. The
elements of the fundamental group are the equivalence classes of closed walks starting at x0.
We say that a walk W is reduced if it does not contain a subwalk of the form u-v-u. We
can obtain a reduced walk W ′ from every walk W by a sequence of reductions: replacing a
subwalk of the form u-v-u by the vertex u. Every walk corresponds to a unique reduced walk.
We say that two walks are equivalent if they correspond to the same reduced walk, which
defines an equivalence class on the set of closed walks starting at x0. We typically consider
the representative of the equivalence class to be its unique reduced walk.

We can now give the definition of the fundamental group of a graph. The fundamental
group of G with base x0, denoted π1(G, x0), consists of the collection of equivalence classes
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of closed walks in G starting from x0, where the group operation is concatenation of their
representatives. Let’s quickly check that π1(G, x0) is a group:

Example 1. Let G be a graph and x0 a fixed vertex of G. Then π1(G, x0) is a group.

Proof. Since the concatenation of two closed walks starting from x0 is again a closed walk
starting from x0, the group is closed. Concatenation of closed walks is associative. The unique
identity is simply the closed walk e = x0. Finally, we show that every element W ∈ π1(G, x0)

has an inverse W−. Let W = x0-v1 . . . -vm-x0 and let W− = x0-vm- . . . -v1-x0. In other words,
W− is the walk W traversed backwards. Now,

W ·W− = x0-v1 . . . -vm-x0-vm . . . -v1-x0.

By the reduction principle, the subwalk vm-x0-vm should be replaced by simply vm, yielding:

W ·W− = x0-v1 . . . vm-x0-vm   . . . -v1-x0

= x0-v1 . . . -vm−1-vm-vm−1- . . . -v1-x0

Now, we can again replace the subwalk vm−1-vm-vm−1 with vm−1. Using this approach, we
can iteratively reduce the walk until it becomes the identity x0. □

4.1. Cycles and the fundamental group. In topology, the purpose of the fundamental
group is to understand the loops of a topological space. In the graph setting, we want to
use the fundamental group to understand the structure of cycles in a graph. Therefore, let’s
understand how cycles appear in the fundamental group.

Let G be a graph, x0 a fixed vertex of G, and π1(G, x0) the fundamental group of G.
Consider a cycle C of G. Then, for any walk W from x0 to C, the closed walk WCW− is an
element of π1(G, x0). Observe that this representation is closed under conjugation: for any
element Z of π1(G, x0), the element Z(WCW−)Z− is again of the form XCX− for a walk
X = ZW from x0 to C. We can likewise translate between any two elements of π1(G, x0) of
the form WCW− and ZCZ− by conjugation. First, observe that X = ZW− is in π1(G, x0)

as it is a closed walk starting at x0, and then observe the following:

X(WCW−)X− = (ZW−)WCW−(WZ−) = ZCZ−.

We will therefore consider a cycle C to live in the fundamental group π1(G, x0) in the
conjugacy class [WCW−] where W is any element of π1(G, x0).

4.2. Generating the fundamental group. The fundamental group of a graph can always
be generated by a special subset of elements of the fundamental group. Let T be any spanning
tree of G. A cycle C is a fundamental cycle for T if there is an edge e of G− T such that C

is the unique cycle of T + e. For every fundamental cycle C for T , there is a unique shortest
path PC from x0 to C contained in T . Let LT be the set of elements of π1(G, x0) of the form
PCCP−

C , where C is a fundamental cycle for T . Then, LT is a generating set for π1(G, x0).
In particular:
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Theorem 2 ([1], Lemma 4.1). Let G be a graph, x0 a fixed vertex of G, and T a spanning
tree of G. Then, every element of π1(G, x0) is the product of elements of LT .

4.3. The base vertex. In the context of the local covering, we care about two aspects of
the fundamental group: first, how cycles appear in the fundamental group, and second, how
normal subgroups of the fundamental group behave. Given a group Γ, a subgroup S of Γ is
normal if γsγ−1 ∈ S for every γ ∈ Γ and s ∈ S. In other words, normal subgroups are those
subgroups that are closed under conjugation by elements of the group.

Observe that in both contexts, the objects that we are interested in – cycles and normal
subgroups – are invariant under conjugation. This means that the base vertex we choose
for the fundamental group does not matter. Let x0 and x1 be two distinct vertices of G

and consider the groups π1(G, x0) and π1(G, x1). Consider a cycle C and its representatives
[W0CW−

0 ] and [W1CW−
1 ] in π1(G, x0) and π1(G, x1), respectively. Fix any walk Z from x1 to

x0 in G. Now, conjugation by Z allows us to move from any representative of C in π1(G, x0)

to a representative of C in π1(G, x1):

Z(W0CW−
0 )Z− = (ZW0)C(ZW0)

−,

and ZW0 is a walk from x1 to C, so (ZW0)C(ZW0)
− is in the class for C in π1(G, x1). In

an analogous way, we can conjugate by a walk from x1 to x0 in order to translate a normal
subgroup N0 of π1(G, x0) into (the same) normal subgroup N1 of π1(G, x1).

Since we only care about objects invariant under conjugation and the base vertex thus does
not matter, from now on we will refer to the fundamental group of G as π1(G) and implicitly
assume an arbitrary fixed base point.

5. Covers and the fundamental group

Covers are related to the fundamental group in the following way. Let C and G be graphs
and let p : C → G be a covering from C to G. Let π1(C) and π1(G) be the fundamental
groups of C and G, respectively. Now, p(π1(C)) ⊆ π1(G). In other words, the covering map
p maps the fundamental group of C to the fundamental group of G. We call the subgroup
p(π1(C)) of π1(G) the characteristic subgroup of p. We will restrict our attention to coverings
where p(π1(C)) is a normal subgroup of π1(C); these are called normal coverings.

Theorem 3 ([2], Theorem 1.38). Let G be a graph. Every normal subgroup of π1(G) cor-
responds to a unique normal covering of G. Therefore, there is a bijection between normal
coverings of G and normal subgroups of π1(G).

The r-local covering pr : Gr → G is a normal covering ([1], Section 4.2). Therefore,
a consequence of Theorem 3 is that the local covering is determined completely by which
(normal) subgroup of π1(G) is its characteristic subgroup.

The characteristic subgroup of a covering essentially identifies the elements of the funda-
mental group of G which appear isomorphically in the fundamental group of the cover. From
this perspective, which subgroup should represent the r-local covering? Since the point of the
fundamental group is to understand the behavior of cycles in a graph, we can think of this
question as asking, which cycles in a graph are “r-local” cycles?
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We know that the r-local covering pr : Gr → G preserves r/2-balls everywhere. Since
every cycle of length at most r appears in the r/2-ball around each of its vertices (recall
Remark 1), the cycles of length at most r in G should appear isomorphically in the local
cover Gr. However, short cycles are not the only cycles that appear in r/2-balls: a cycle of
any length that appears in the neighborhood of a vertex is in an r/2-ball in G and thus should
appear isomorphically in the cover.

Surprisingly, although short cycles are not the only r-local cycles, it turns out that they
contain all of the necessary information about r-local cycles in the fundamental group. Let
πr
1(G) be the subgroup of π1(G) generated by the short cycles of G. Specifically, πr

1(G) is
the subgroup containing every element of π1(G) that can be written as the product of cycles
[WCW−] where C has length at most r. Since cycles are represented by conjugacy classes in
the fundamental group, πr

1(G) is a normal subgroup of G. We say that every cycle [WCW−]

that appears in πr
1(G) is generated by cycles of length at most r in the fundamental group.

Now, the r-local covering can be equivalently defined in terms of its characteristic subgroup,
which is how it was originally defined in [1].

Theorem 4 ([1], Section 4.2). Let G be a graph and r a positive integer. Then, the r-local
covering pr : Gr → G is the unique covering of G with characteristic subgroup πr

1(G).

The fact that pr : Gr → G is both the universal r/2-ball-preserving covering and the
unique covering with characteristic subgroup πr

1(G) gives us a number of benefits. First,
on an intuitive level, “short cycles” and “small-radius balls” are both simple and appealing
definitions of local structure. Second, the fact that they are equivalent means that we have
both combinatorial and topological tools at hand to study the local cover.

We also have the following two important properties.

Theorem 5. Let G be a graph and r ≥ 3 an integer. Then, π1(Gr) = πr
1(Gr).

Theorem 5 states that the fundamental group of every r-local cover Gr is equal to the
r-local subgroup of the fundamental group. This is a way of saying that Gr is “determined
by its local structure.” Since Gr is meant to represent only the local structure of G, it makes
sense that Gr is determined by its local structure.

The converse also holds: if a graph is “determined by its local structure” in this way, then
it is equal to its local cover.

Theorem 6. Let G be a graph and r ≥ 3 an integer. Then, Gr = G if and only if π1(G) =

πr
1(G).

6. Deck transformations of the local cover

Much of the time, the r-local cover Gr of a graph G is an infinite graph, even when the
original graph G is finite. For example, the r-local cover of a cycle Ck when k > r is an
infinite path; see Fig. 4.

At first, it might seem unwieldy that we end up with an infinite graph representing the “lo-
cal” structure of a finite graph, but the r-local cover Gr has very strong symmetry properties.
To explain what this means, let’s start with some definitions.
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Figure 4. A cycle C5 and its r-local cover for r ≤ 4, the infinite path.

Let G be a graph and let p : C → G be a covering of G. Let v ∈ V (G). A vertex u ∈ C is
called a lift of v (to C) if p(u) = v. The set of all lifts of v (to C) is called the fiber of v (in
C).

Observation 2. Let G be a graph and p : C → G a covering of G. For each vertex v of G, let
F (v) denote the fiber of v in C. Now, {F (v) | v ∈ V (G)} is a partition of V (C).

We will show that the symmetries of the graph C behave well with respect to the set of
fibers defined in Observation 2. Let Aut(G) denote the set of automorphisms of the graph G,
i.e. the set of isomorphisms f : G → G.

Observation 3. For every graph G, the set Aut(G) forms a group with the function composition
operation.

Given a covering p : C → G, an automorphism f of C is called a deck transformation of p
if f preserves the partition of C into fibers, as described in Observation 2. More specifically,
an automorphism f of C is a deck transformation if for every vertex u of C, both u and f(u)

are in the same fiber F (v) with v ∈ V (G). Another way of saying this is the following: f is a
deck transformation of C if p ◦ f = p. Let D(p) denote the set of deck transformations of p.

Observation 4. Let G be a graph and p : C → G a covering of G. Then, the set of deck
transformations D(p) is a subgroup of Aut(C).

The deck transformations D(p) of a covering p : C → G act transitively on each fiber of p
if for every vertex v of G and for every two vertices u1, u2 of C such that u1, u2 ∈ F (v), there
is a deck transformation f ∈ D such that f(u1) = u2. It turns out that normal covers are
precisely those whose deck transformations act transitively on each fiber:

Theorem 7. Let C and G be graphs and let p : C → G be a covering map. Then, the deck
transformations of p act transitively on each fiber of p if and only if p is normal.

Since local coverings are normal, we have the following:

Theorem 8. Let G be a graph, let r be a positive integer, and let pr : Gr → G be the r-local
covering of G. Then, the deck transformations D(pr) act transitively on each fiber of of pr.

Theorem 8 is a way of formalizing the idea that Gr has “strong symmetry properties.” One
implication is the following. The orbits of the automorphism group Aut(G) of a graph G are
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Figure 5. The cycle C5 and its r-local cover for r ≤ 4. The fibers are drawn
with colors corresponding to their vertices.

sets O1, . . . , Ok that form a partition of the vertex set V (G) of G such that for every vertex
v of G with v ∈ Oi, both of the following hold: (1) f(v) ∈ Oi for every f ∈ Aut(G); and (2)
for every u ∈ Oi there exists f ∈ Aut(G) such that f(v) = u.

An infinite graph is called quasi-transitive if its automorphism group has finitely many
orbits. A consequence of Theorem 8 is that every fiber F (v) is contained in a single orbit of
Aut(Gr). Therefore, the number of fibers is an upper bound for the number of orbits, and so
Gr is quasi-transitive. In particular, Aut(Gr) has at most |V (G)| orbits, since there are at
most |V (G)| fibers.

7. The binary cycle space

Let G be a graph, r a positive integer, and pr : Gr → G the r-local cover of G. We discussed
in Section 5 that the r-local cover Gr is generated by short cycles in the fundamental group
(meaning that its fundamental group is equal to the r-local subgroup of its fundamental
group). In this section, we will show that there is also another, simpler setting in which the
local cover is “generated by short cycles.”

Let E denote the edges of G. The binary cycle space of G, denoted Z(G), is the vector space
over {0, 1}E spanned by the cycles of G, with binary addition. A cycle of G is represented in
{0, 1}E by the indicator of its edges.

Now, we can again look at what happens if we only want to consider elements generated by
short cycles. To that end, the subspace of Z(G) spanned by vectors corresponding to cycles
of length at most r is denoted Zr(G).

Now we have:

Theorem 9. Let G be a graph and r ≥ 3 a positive integer. Suppose that π1(G) = πr
1(G).

Then, Z(G) = Zr(G).

The fact that Z(G) = Zr(G) can be stated informally as “the graph G is generated by
short cycles in the binary cycle space.” Theorem 9 states that if a graph is generated by short
cycles in its fundamental group, it is also generated by short cycles in its binary cycle space.
This in particular implies the following:

Theorem 10 ([1], Lemma 4.6). Let G be a graph, r ≥ 3 a positive integer, and Gr the r-local
cover of G. Then, Z(Gr) = Zr(Gr).
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Being generated by short cycles in the binary cycle space is quite intuitive: a cycle C

is generated by cycles of length at most r in the binary cycle space if there exists a set
{C1, . . . , Ck} of cycles, each of length at most r, such that C is the symmetric difference
△{C1, . . . , Ck}. (An edge e is in the symmetric difference △{C1, . . . , Ck} if and only if it
appears in an odd number of cycles of {C1, . . . , Ck}.)

By Theorem 9, being generated by short cycles in the fundamental group implies being
generated by short cycles in the binary cycle space. Unfortunately, the converse does not
hold. Nevertheless, if a graph G contains a cycle that is not generated in the binary cycle
space, this witnesses that the cycle is also not generated in the fundamental group.

Since the binary cycle space is much easier to work with than the fundamental group, it
might be useful to understand whether there are natural cases where we can instead work in
the binary cycle space:

Question 1. Are there any natural conditions under which generation in the binary cycle
space implies generation in the fundamental group?

8. Examples

We have now discussed several definitions and properties of local covers. In this section,
we explain how to check if a graph C is the r-local cover of a graph G, and go through several
examples. To address the former point, we use the following characterization:

Theorem 11 (Raphael Jacobs and Paul Knappe). Let G and C be graphs and r a positive
integer. Then, C is the r-local cover of G if and only if there is a covering map p : C → G

such that all of the following hold:

(1) the deck transformations Dp of p act transitively on each fiber of p;
(2) for every cycle Q of length at most r in G, there is a cycle O in C such that p induces

an isomorphism from O to Q; and
(3) there exists a spanning tree T of C such that every fundamental cycle for T is generated

by cycles of length at most r in the fundamental group of C.

Let’s understand why Theorem 11 holds. By Theorem 4, given a candidate covering map
p : C → G, we need to check that the characteristic subgroup of p is precisely πr

1(G). Point
(1) guarantees that the covering map p is normal. Therefore, to check that the characteristic
subgroup of p contains πr

1(G), it suffices to check that the characteristic subgroup of p contains
a representative for every cycle of length at most r, which is done by Point (2).

Finally, we need to check that the characteristic subgroup of p contains only πr
1(G). There-

fore, we need to show that every element of the fundamental group π1(C) maps to an element
of πr

1(G). Since we know that the fundamental cycles of any spanning tree of C generate
π1(C) by Theorem 2, it suffices to check this property for the fundamental cycles of some
spanning tree, which is done in Point (3).

Theorem 11 is the best way we currently know to verify whether a graph C is the r-local
cover of a graph G in general. However, in many cases, the graph G has enough structure
that we can directly determine the local cover. In the rest of this section, we review a few
basic examples of local covers.
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Example 2. Let G be a graph with n := |V (G)|. The 2-local cover G2 of G is a tree. The
n-local cover Gn of G is G itself. As r grows from 2 to n, the r-local cover reflects a growing
amount of the structure of G.

Example 3. Let T be a tree. The r-local cover of T is T itself for every positive integer r.

Example 4. Let G be a cycle of length k. The r-local cover of G is an infinite path if r < k

(see Fig. 4). The r-local cover of G is G itself if r ≥ k.

Example 5. Let G be a graph with girth g. The r-local cover of G is a tree if r < g.

Example 6. Let G be the n× n grid. The r-local cover of G is a tree if r ≤ 3. The r-local
cover of G is G itself if r ≥ 4.

Example 7. Let G be the toroidal grid, i.e. the grid embedded in a torus. Let k be the
minimum length of a cycle that “goes around the torus.” The r-local cover of G is the infinite
planar grid if 4 ≤ r < k.

9. Problems

There are many interesting open problems related to the local cover. Any problem that
aims to formalize the idea that the local cover Gr represents “only” the local structure would
be very interesting. I will likely update this section to include some problems of that flavor
in the near future. For now, I want to mention two problems related to the definition of the
local covering:

Question 2. Is there a proof that the r-local covering pr : Gr → G exists, using only the
definition that pr is the universal r/2-ball-preserving covering?

Question 3. Is there a proof that the r-local covering pr : Gr → G is a normal covering,
using only the definition that pr is the universal r/2-ball-preserving covering?

It is known that the r-local covering exists and is normal, but the known proofs both use
the definition of pr : Gr → G as the unique covering with characteristic subgroup πr

1(G).
Since the universal r/2-ball-preserving covering is a very natural definition, it would be quite
interesting to know whether these key properties can be proved using this definition.
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