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1. Introduction

This is a lightly edited excerpt from my PhD thesis that describes the central bag method,
what I spent most of my PhD working on. The central bag method is a way to reduce
a problem about a graph G to a problem about a proper induced subgraph β of G. The
idea behind the central bag method is to make tractable a difficult problem by considering,
instead of G, a graph that has stronger properties than G. The set-up of the method allows
us to arrange for β to satisfy certain additional conditions; this lets us exploit the structure
of G and β to guarantee that the problem in question is easier to solve in β than in G. Under
the right conditions, we can then lift the solution in β to a solution in G.

The central bag method appears in [7, 2, 5, 6, 1, 4, 3] and other papers, as do several of
the results in this writeup. I am sharing this presentation of the central bag method because
it aims to generalize the definitions and tools used in the previously-cited papers in a unified
and consistent way. We begin first by reviewing the essential background, then by presenting
an overview of the intuition behind the central bag method.

2. Background

A tree decomposition (T,χ) of a graph G consists of a tree T and a map χ : V (T ) → 2V (G),
satisfying the following properties:

(i) For every v ∈ V (G), there exists t ∈ V (T ) such that v ∈ χ(t),
(ii) For every v1v2 ∈ E(G), there exists t ∈ V (T ) such that v1, v2 ∈ χ(t),
(iii) For every v ∈ V (G), the support of v in (T,χ) is connected.
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The width of a tree decomposition (T,χ) is mint∈V (T ) |χ(t)|− 1. The treewidth of a graph
G is the minimum width of a tree decomposition of G. The sets χ(t) for t ∈ V (T ) are called
the bags of the tree decomposition (T,χ). For a set X ⊆ V (T ), we let χ(X) =

󰁖
t∈X χ(t).

An adhesion of a tree decomposition (T,χ) is a set of the form χ(t) ∩ χ(t′) for tt′ ∈ E(T ).
For a vertex t ∈ V (T ), the adhesions of χ(t) are the sets χ(t) ∩ χ(t′) for all t′ ∈ N(t).
For a vertex t ∈ V (T ), the torso of χ(t) is the graph G(χ(t)) such that V (G(χ(t))) = χ(t)

and E(G(χ(t))) = E(G[χ(t)]) ∪
󰀓󰁖

t′∈N(t)

󰀃
(χ(t)∩χ(t′)

2

󰀄󰀔
. We say that (T,χ) has adhesion k if

|χ(t) ∩ χ(t′)| ≤ k for all tt′ ∈ E(T ).
Let G be a graph. A function w : V (G) → R is called a weight function on G. If w is

a weight function on G, then for all X ⊆ V (G), we say w(X) :=
󰁓

x∈X w(x). A weight
function w on G is a normal weight function if w : V (G) → [0, 1] and if w(G) = 1.

Let G be a graph and let w be a normal weight function on G. A set X ⊆ V (G) is called
a w-balanced separator of G if for every component D of G \ X, it holds that w(D) ≤ 1

2
.

Essentially, w-balanced separators split G into small components with respect to the weight
function w. It turns out that the property of having w-balanced separators of small size for
every normal weight function w is equivalent to the property of having bounded treewidth.
Before we prove this equivalence, we give several important definitions.

Let G be a graph, let w be a normal weight function on G, and let (T,χ) be a tree
decomposition of G. We say that (T,χ) is w-unbalanced if for every separation (A,C,B) ∈
τ((T,χ)) it holds that w(A) > 1/2 or w(B) > 1/2. Conversely, (T,χ) is w-balanced if there
exists a separation (A,C,B) ∈ τ((T,χ)) such that w(A) ≤ 1/2 and w(B) ≤ 1/2. If (T,χ) is
w-unbalanced, we define the tree

−→
T as the directed tree formed from T by directing each

edge of T toward the side of its corresponding separation that has large weight. We call
−→
T

the w-direction of T .
A sink of a directed graph is a vertex v such that every edge incident with v is directed

towards v.

Proposition 2.1. Let T be a directed tree. Then, T has a sink.

Proof. Suppose for a contradiction that T does not have a sink. Let P = p1- . . . -pk be a
longest directed path in T . Since T does not have a sink, the vertex pk has an out-neighbor
u. Since P is a longest directed path of T , it follows that u ∈ V (P ). But now T contains a
cycle, contradicting that T is a tree. □

Lemma 2.2. Let G be a graph and let (T,χ) be a tree decomposition of G. Suppose w is a
normal weight function on G such that (T,χ) is w-unbalanced. Let

−→
T be the w-direction of

T . Then, there exists a vertex r ∈ V (
−→
T ) such that for every path P of T from v ∈ V (

−→
T )\{r}

to r, P is a directed path from v to r in
−→
T .
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Proof. We begin by proving the following property of
−→
T :

(1) For each v ∈ V (
−→
T ), there is at most one vertex u ∈ N(v) such that the edge vu is directed

from v to u.

Suppose for a contradiction that there exist u1, u2 ∈ N(v) such that the edge vu1 is di-
rected toward u1 and the edge vu2 is directed toward u2. Let S1 = Svu1 be the separation of
G corresponding to edge vu1 and let S2 = Svu2 be the separation of G corresponding to edge
vu2. Let T1 and T2 be the components of

−→
T \{v} containing u1 and u2, respectively. Because

edge vu1 is directed from v to u1, it follows that w(χ(T1) \ (χ(u1) ∩ χ(v))) > 1/2. Similarly,
w(χ(T2) \ χ(u2) ∩ χ(v))) > 1/2. However, by condition (iii) of the definition of tree decom-
position, it follows that χ(T1) ∩ χ(T2) ⊆ χ(u1) ∩ χ(v) ∩ χ(u2), and so χ(T1) \ (χ(u1) ∩ χ(v))

is disjoint from χ(T2) \ (χ(u2)∩ χ(v)). But now w(G) > 1, contradicting that w is a normal
weight function on G. This proves (1).

By Proposition 2.1,
−→
T has a sink s ∈ V (T ). We prove by induction on the length of the

path that every path from a vertex v ∈ V (
−→
T ) \ {s} to s is directed toward s. The base

case is for paths of length one, which are the edges incident with s; by the definition of a
sink, each of these paths is directed toward s. Assume every path of length k − 1 from a
vertex of V (

−→
T )\{s} to s is directed toward s, and consider a path P = v-p1- . . . -pk−2-s from

v ∈ V (
−→
T ) to s of length k. Let p1 be the neighbor of v in P . By the inductive hypothesis,

the path p1- . . . -pk−2-s is directed toward s. By (1), since p2 is an out-neighbor of p1, it
follows that the edge vp1 is directed toward p1. Therefore, P is directed toward s. This
completes the proof. □

We call the vertex r as in Lemma 2.2 the w-heavy vertex of T , and the bag χ(r) the
w-heavy bag of (T,χ). We can now prove the following lemma (which first appeared in [9]
as 2.5).

Lemma 2.3. Let G be a graph and let k be a positive real number. Suppose that tw(G) ≤ k.
Then, for every normal weight function w on G, there exists Xw ⊆ V (G) such that Xw is a
w-balanced separator of G of size at most k + 1.

Proof. Let (T,χ) be a tree decomposition of G of width k. First, suppose that (T,χ) is not
w-unbalanced. Then, there is an edge e = t1t2 of T and separation Se = (Ae, Ce, Be) such
that w(Ae) <

1
2

and w(Be) <
1
2
. Also, Ce ⊆ χ(t1) ∩ χ(t2), so |Ce| ≤ k + 1. Now, Xw = Ce is

a w-balanced separator of G of size at most k + 1.
Therefore, we may assume that (T,χ) is w-unbalanced. Let r ∈ V (T ) be the w-heavy

vertex of T as in Lemma 2.2, and let t1, . . . , tm be the neighbors of r in T . For each
i ∈ {1, . . . ,m}, let Si = Srti = (Ai, Ci, Bi), and assume up to symmetry between Ai and Bi

that w(Ai) < 1/2. Now, the connected components of G\χ(r) are exactly the sets A1, . . . , Am.
It follows that Xw = χ(r) is a w-balanced separator of G of size at most k+1. This completes
the proof. □
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The converse of Lemma 2.3 also holds:

Lemma 2.4 ([8]; [2], Lemma 1.13). Let G be a graph and let k be a positive real number.
Suppose that G has a w-balanced separator of size at most k for every normal weight function
w on G. Then, tw(G) ≤ 2k.

Because of Lemmas 2.3 and 2.4, we can use the existence of w-balanced separators of
bounded size as a characterization of bounded treewidth. This characterization is useful
because separators are generally better-understood and more intuitive than tree decompo-
sitions, and thus easier to work with. In this thesis, the relationship between balanced
separators and treewidth is crucial.

Balanced separators are not the only graph parameter that interacts well with treewidth.
Indeed, treewidth is related to many important graph structures and parameters. The paper
[8] is an extensive survey of graph parameters that are tied to treewidth.

Let G be a graph. A separation of G is a triple (A,C,B) such that A,C, and B are
disjoint, A ∪ C ∪ B = V (G), and A is anticomplete to B. If G is connected, (A,C,B) is a
separation of G, and A and B are both non-empty, then C is a cutset of G. For a separation
S = (A,C,B), we set the notation A(S) := A, C(S) := C, and B(S) := B. First, we show
the following:

Proposition 2.5. Let G be a graph and let (T,χ) be a tree decomposition of G. Let e = t1t2
be an edge of E(T ) and let T1, T2 be the connected components of T \ {e} containing t1 and
t2, respectively. Then, χ(T1) \ (χ(t1) ∩ χ(t2)) and χ(T2) \ (χ(t1) ∩ χ(t2)) are disjoint and
anticomplete to each other.

Proof. Let X1 = χ(T1) \ (χ(t1)∩χ(t2)) and X2 = χ(T2) \ (χ(t1)∩χ(t2)). First, we show that
X1 and X2 are disjoint. Suppose that x ∈ X1 ∩ X2. Then, x ∈ χ(T1) and x ∈ χ(T2). By
condition (iii) of the definition of tree decomposition, it follows that x ∈ χ(t1) and x ∈ χ(t2),
a contradiction. Therefore, X1 and X2 are disjoint.

Next, suppose x1 ∈ X1, x2 ∈ X2, and x1x2 is an edge of G. By condition (ii) of the
definition of tree decomposition, it follows that there exists t ∈ V (T ) such that {x1, x2} ⊆
χ(t). Assume up to symmetry between T1 and T2 that t ∈ T1. Then, x2 ∈ χ(T1), so
by condition (iii) of the definition of tree decomposition, x2 ∈ χ(t1) and x2 ∈ χ(t2), a
contradiction. □

Let G be a graph and let (T,χ) be a tree decomposition of G. Let e = t1t2 and let Ce =

χ(t1)∩χ(t2), Ae = χ(T1)\Ce, and Be = χ(T2)\Ce. Now, Ae and Be are anticomplete to each
other by Proposition 2.5. The separation corresponding to e, denoted Se, is defined as Se =

(Ae, Ce, Be) (with symmetry between t1 and t2 and thus Ae and Be). The correspondence
between an edge of the tree decomposition and a separation is visualized in Figure 1. The
collection of separations corresponding to (T,χ), denoted τ((T,χ)) is defined as follows:
τ((T,χ)) = {Se | e ∈ E(T )}.

Two separations S1 = (A1, C1, B1) and S2 = (A2, C2, B2) are called non-crossing if up
to symmetry between A and B it holds that A1 ∪ C1 ⊆ B2 ∪ C2 and A2 ∪ C2 ⊆ B1 ∪ C1.
A collection S of separations of G is called laminar if the separations of S are pairwise
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e

Ce

Ae Be

T1 T2

t1 t2

Figure 1. A visualization of the correspondence between the edge e = t1t2
(shown in bold) and the separation (Ae, Ce, Be), where Ae is mint, Ce is black,
and Be is light mint.

non-crossing. The following crucial result of Robertson and Seymour states that there is a
correspondence between tree decompositions of G and laminar collections of separations of
G.

Theorem 2.6 ([10], 9.1). Let G be a graph. Then, for every tree decomposition (T,χ) of G,
τ((T,χ)) is laminar. Conversely, for every laminar collection of separations S of G, there
exists a tree decomposition (T,χ) of G such that τ((T,χ)) = S.

3. Overview

Let G be a graph, and assume that our task is to determine the treewidth of G (up to a
constant factor; mainly, we are interested in whether or not a bound exists, not in optimizing
the bound). Recall that a tree decomposition (T,χ) of G has adhesion k if |χ(u)∩χ(v)| ≤ k

for all uv ∈ E(T ). Suppose that we are given a tree decomposition (T,χ) of G of adhesion
k. There are two possibilities:

(1) The tree decomposition (T,χ) is w-balanced for every normal weight function w on
G; or

(2) there exists a normal weight function w on G such that (T,χ) is w-unbalanced.
Suppose (1) holds. Then, for every normal weight function w on G, there is a separation

(Aw, Cw, Bw) ∈ τ((T,χ)) of G such that w(Aw) ≤ 1/2, w(Bw) ≤ 1
2
, and Cw ⊆ χ(t) ∩ χ(t′)

for some edge tt′ ∈ E(T ). Since (T,χ) has adhesion k, it follows that |Cw| ≤ k, so G has a
w-balanced separator of size at most k for every normal weight function w on G. By Lemma
2.4, we conclude that tw(G) ≤ 2k. Therefore, we may assume that (2) holds.

Let w be a normal weight function on G such that (T,χ) is w-unbalanced. Then, we can
form the w-direction

−→
T of T , and by Lemma 2.2, there is a w-heavy vertex r ∈ V (T ).

Let χ(r) be the w-heavy bag of T , and, following Figure 2, let T1, T2, T3 be the components
of T \ {r} rooted at t1, t2, t3, respectively. Now, G \ χ(r) consists of connected components
D such that D has small weight and small neighborhood in β; specifically, w(D) < 1

2
and

|N(D)| ≤ k. These connected components are obtained by considering the separations
given by (T,χ) from the edges t1r, t2r, and t3r. The crucial observation for the central bag



6 TARA ABRISHAMI

r

t1

t4 t5

t2

t6 t7

t3

t8 t9

Figure 2. An example of the tree
−→
T with heavy vertex r.

method is that since the components of G \ χ(r) are all of small weight and attach to χ(r)

in a controlled way, they don’t contribute very much to the treewidth of G. Given some
additional assumptions, we can show that the treewidth of G is bounded by a function of
the treewidth of χ(r).

Now, the task of finding the treewidth of G is reduced to the task of finding the treewidth
of χ(r). Therefore, we want χ(r) to have some additional properties relative to G that make
determining the treewidth an easier problem for χ(r) than for G. How can we guarantee that
χ(r) has these additional properties? In this overview, we started from a tree decomposition
of G. Recall that tree decompositions are equivalent to laminar collections of separations.
In practice, we usually start not with a tree decomposition but instead with a collection of
separations that was chosen with respect to the graph G. Most graphs that we are interested
in have structure theorems that describe the existence and properties of cutsets in the graph.
The idea is to use these cutsets to define laminar collections of separations that allow us to
draw strong conclusions about the structure of χ(r).

When we state and prove the central bag method formally in the next section, everything
will be in the language of separations rather than tree decompositions. This is mostly because
we can relax some properties of separations and maintain the strength of the central bag
method, but the relaxations cost us the direct correspondence with tree decompositions.
Separations are also more natural graph structures to work with, and interact well with
existing structure theorems. However, I find that the basic intuition of reducing to a bag of
a well-chosen tree decomposition is valuable and helps to illustrate several of the properties
we care about while using the central bag method. Therefore, we will return to this informal
overview at the end of the next section to help motivate certain definitions and properties.

4. The details

Let G be a graph and let w : V (G) → [0, 1] be a normal weight function on G. Let S be
a collection of separations of G. We define the central bag for S, denoted βS , as

βS =
󰁟

S∈S

(B(S) ∪ C(S)). (1)

Observe that G \ βS =
󰁖

S∈S A(S).
A collection S of separations of G is k-aligned (with respect to a normal weight function

w on G) if the following conditions hold:
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(1) For all S ∈ S:
(i) C(S) ∩ βS is connected;
(ii) there is a set δ(S) ⊆ C(S) ∩ βS such that |δ(S)| ≤ k and (A(S) ∪ (C(S) \

δ(S)), δ(S), B(S)) is a separation of G;
(iii) w(A(S) ∪ (C(S) \ δ(S))) < 1

2
; and

(2) for every component D of
󰁖

S∈S A(S), there exists S ∈ S such that D ⊆ A(S).
The definition of k-aligned makes several implicit assumptions about collections of sep-

arations. Suppose S is k-aligned and S ∈ S. Because of condition (1iii) of the definition
of k-aligned, it holds that w(A) < 1/2. In applications of the central bag method, the way
we typically guarantee that condition (1iii) is satisfied is by arranging that w(B) > 1/2 for
the separations (A,C,B) that we work with. In general, in the remainder of this thesis, we
assume by convention for all separations (A,C,B) that w(A) ≤ w(B), and in most cases
that w(A) < 1/2 and w(B) > 1/2.

By fixing that w(A) ≤ w(B), the symmetry between A and B in the separation (A,C,B)

is broken. We can thus update the definition of laminar accordingly. Two separations
(A1, C1, B1) and (A2, C2, B2) are A-non-crossing if A1∩A2 = C1∩A2 = A1∩C2 = ∅. Figure
3 gives an illustration of the definition of A-non-crossing. A collection S of separations is
A-laminar if the separations in S are pairwise A-non-crossing.

A1 C1 B1

A2 ∅ ∅
C2 ∅
B2

Figure 3. Two separations S1 = (A1, C1, B2) and S2 = (A2, C2, B2) are A-
non-crossing if A1 ∩ A2 = A1 ∩ C2 = A2 ∩ C1 = ∅.

Condition (2) of the definition of k-aligned is a relaxation of being A-laminar. Indeed, if
a collection S is A-laminar, then it satisfies condition (2) of the definition of k-aligned:

Lemma 4.1. Let G be a graph and let S be an A-laminar collection of separations. Then,
S satisfies condition (2) of the definition of k-aligned.

Proof. Let D be a component of
󰁖

S∈S A(S) and let S1 ∈ S be such that D ∩ A(S1) ∕= ∅.
Now, N(A(S1)) ⊆ C(S1) and, because S is A-laminar, C(S1) ∩ A(S2) = ∅ for all S2 ∈ S.
Therefore, D ⊆ A(S1). This completes the proof. □

When S is k-aligned, we define, for all S ∈ S, A∗(S) := A(S) ∪ (C(S) \ δ(S)). We also
define an anchor map δ∗ : S → V (G) with δ∗(S) ∈ δ(S) for all S ∈ S. For all S ∈ S, we call
δ∗(S) the anchor for S.

Lemma 4.2. Let G be a graph and let w be a normal weight function on G. Let S be a
k-aligned collection of separations of G. Then, the anchor for each separation of S is in βS .
Also, the function δ∗−1 : δ∗(S) → 2S is well-defined (where δ∗−1(v) = {S ∈ S | δ∗(S) = v})
and {δ∗−1(v) | v ∈ V (G)} is a partition of S.
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Proof. Let S ∈ S. By (1ii) of the definition of k-aligned, it follows that δ(S) ⊆ βS , and
by construction δ∗(S) ∈ δ(S), so the anchor for S is in βS . The function δ∗−1 is well-
defined where δ∗−1(v) is the set of separations S ∈ S such that δ∗(S) = v. Since δ∗ is a
function, it follows that for every S ∈ S, there is exactly one v such that S ∈ δ∗−1(v). Thus,
{δ∗−1(v) | v ∈ V (G)} is a partition of S. This completes the proof. □

We also define a weight function wS on βS called the inherited weight function for S. Let
O be a fixed ordering of the vertices V (G). For each component D of

󰁖
S∈S A(S), let f(D)

denote the O-minimum vertex v such that D ⊆
󰁖

S∈δ∗−1(v) A(S). Let AO(v) denote the union
of the components D of

󰁖
S∈S A(S) such that f(D) = v. By Lemma 4.2, the anchor for every

separation in S is in βS , and so {AO(v) | v ∈ βS} is a partition of
󰁖

S∈S A(S). (Possibly
AO(v) = {}). Now, for all v ∈ βS ,

wS(v) = w(v) + w(AO(v)). (2)

The inherited weight function wS depends on the anchor map δ∗ for S; the weight function
is essentially “inherited from” the anchor map. Next, we show that wS is a normal weight
function on βS .

Lemma 4.3. Let G be a graph and let w be a normal weight function on G. Let S be a
k-aligned collection of separations of G. Then, the inherited weight function wS for S is a
normal weight function on the central bag βS for S.

Proof. By the definition of wS , and since w is a normal weight function, it follows that
wS : βS → [0, 1]. We need to show that wS(βS) = 1. By the definition of wS , we have

wS(βS) =
󰁛

v∈βS

wS(v)

=
󰁛

v∈βS

w(v) +
󰁛

v∈βS

w(AO(v)).

By Lemma 4.2 and the definition of AO, it follows that
󰁖

v∈βS
AO(v) =

󰁖
S∈S A(S). Therefore,

wS(βS) =
󰁛

v∈βS

w(v) +
󰁛

S∈S

w(A(S))

=
󰁛

v∈βS

w(v) +
󰁛

v∈V (G)\βS

w(v)

=
󰁛

v∈V (G)

w(v)

= 1,

where the last equality holds since w is a normal weight function on G. This completes the
proof. □

Next, we prove that there exist conditions under which it holds that if βS has a wS-
balanced separator of bounded size, then G has a w-balanced separator of bounded size.
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C1

C2C3

A1

A2A3

βS

Figure 4. An illustration of the central bag βS for a k-aligned collection S
with three separations (A1, C1, B1), (A2, C2, B2), and (A3, C3, B3).

We first need the following definition. Let S be a k-aligned collection of separations with
anchor map δ∗ and let X ⊆ βS . . A separation S ∈ S is said to cross X if either δ∗(S) ∈ X

or if there exist two distinct components D1, D2 of βS \ X such that C(S) ∩ D1 ∕= ∅ and
C(S) ∩D2 ∕= ∅.

Theorem 4.4. Let G be a graph and let w be a normal weight function on G. Let S be
a k-aligned collection of separations of G, let δ∗ be the anchor map for S, and let wS be
the inherited weight function for S. Suppose that βS has a balanced separator X of size γ.
Let c denote the number of separations of S that cross X in βS . Then, G has a w-balanced
separator of size γ + ck.

Proof. Let S ′ ⊆ S denote the set of all separations S of S such that C(S) crosses X. Let Y
be defined as follows:

Y = X ∪
󰀣

󰁞

S∈S′

δ(S)

󰀤
. (3)

By condition (1ii), δ(S) ⊆ βS for all S ∈ S, so Y ⊆ βS . Next, we claim that Y is a w-
balanced separator of G of size at most γ + ck. First, we show that Y has size at most
γ + ck.

(2) |Y | ≤ γ + ck.

By the definition, |Y | ≤ |X| + |S ′| · maxS∈S′ |δ(S)|. Since S is k-aligned, it follows that
|δ(S)| ≤ k for all S ∈ S ′. By the assumptions of the theorem, |X| ≤ γ and |S ′| ≤ c. There-
fore, |Y | ≤ γ + ck. This proves (2).
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Next, we show that Y is a w-balanced separator of G.

(3) Let M be a connected component of G \ Y . Then, w(M) ≤ 1
2
.

Suppose w(M) > 1
2
. Let Q1, . . . , Qm be the connected components of βS \ X and let

D1, . . . , Dℓ be the connected components of G \ βS . Note that M ⊆ (
󰁖m

i=1 Qi) ∪
󰀓󰁖ℓ

i=1 Di

󰀔

and that, since Y ⊆ βS , if Di ∩M ∕= ∅, then Di ⊆ M . By condition (2) of the definition of
k-aligned, it follows that for every 1 ≤ i ≤ ℓ there exists Si ∈ S such that Di ⊆ A(Si).

First, suppose that Q1 ∩ M ∕= ∅ and Q2 ∩ M ∕= ∅. Since Q1 and Q2 are connected
components of βS \X, it follows that there exists Di such that Di ∩M ∕= ∅, C(Si)∩Q1 ∕= ∅,
and C(Si) ∩Q2 ∕= ∅. In particular, C(Si) crosses X, and so δ(Si) ⊆ Y .

By condition (1ii) of the definition of k-aligned, it holds that (A∗(Si), δ(Si), B(Si)) is a
separation of G. Since M ∩ A∗(Si) ∕= ∅ and δ(Si) ⊆ Y , it follows that M ⊆ A∗(Si). But by
condition (1iii) of the definition of k-aligned, we conclude that w(M) ≤ w(A∗(Si)) ≤ 1

2
, a

contradiction.
Therefore, we may assume that M ∩ Qi = ∅ for 2 ≤ i ≤ m. Suppose that Q1 ∩M = ∅.

It follows that there exists 1 ≤ i ≤ ℓ such that M = Di. But since Di ⊆ A(Si) and
w(A(Si)) ≤ 1

2
, it follows that w(M) ≤ 1

2
, a contradiction. Therefore, Q1 ∩M ∕= ∅. Let

M ′ = Q1 ∪
󰁞

S∈S,C(S)⊆Q1∪X

A∗(S).

By definition, M ⊆ M ′. Also,

w(M) ≤ w(M ′)

= w(Q1) +
󰁛

S∈S,C(S)⊆Q1∪X

w(A∗(S))

≤ wS(Q1)

≤ 1

2
,

a contradiction. This proves (3).

We have now shown that Y is a w-balanced separator of G of size at most γ + ck. This
completes the proof. □

Theorem 4.4 is the reason that the central bag method is a powerful tool to study treewidth:
given a collection of k-aligned separations S and an anchor map δ∗ for S, Theorem 4.4 allows
us to bound the treewidth of a graph G by a function of the treewidth of the central bag
βS . (We move between balanced separators and treewidth using Lemmas 2.3 and 2.4). The
bound on the treewidth of G depends on three key pieces:

(1) the treewidth of βS ,
(2) the smallest k such that S is k-aligned, and
(3) the number of separations in S that cross a balanced separator of βS .
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C1

C2C3

A1

A2A3

XβS

v

u

Figure 5. An illustration of a balanced separator X in a central bag. Suppose
βS \X has two connected components, the left and right halves of the circle.
Then, the separation (A1, C1, B1) crosses X, but (A2, C2, B2) does not. The
separation S3 = (A3, C3, B3) crosses X if δ(S3) = u, but not if δ(S3) = v.

The task of applying the central bag method to prove bounded-treewidth results therefore
amounts to arranging these three properties favorably according to the problem at hand.

Let’s now revisit the informal overview involving the heavy bag of a tree decomposition
from the beginning of the chapter. In particular, let’s prove that the set-up from before fits
into the framework defined in this section.

Theorem 4.5. Let G be a graph and let (T,χ) be a tree decomposition of G of adhesion
k. Assume that w is a normal weight function on G such that (T,χ) is w-unbalanced. Let
S = τ((T,χ)). Let r be the w-heavy vertex of T as in Lemma 2.2, and let χ(r) be the w-heavy
bag of (T,χ). Then, there exists S ′ ⊆ S such that χ(r) = βS′ and S ′ satisfies conditions
(1ii), (1iii), and (2) of the definition of k-aligned.

Proof. Let t1, . . . , tm be the neighbors of r in T , and let S ′ ⊆ S be the collection of separations
corresponding to the edges t1r, . . . , tmr. First, we show that χ(r) = βS′ . Since (T,χ)

is w-unbalanced, up to symmetry between A and B we may assume (following our usual
convention) that w(A(S)) < 1/2 and w(B(S)) > 1/2 for every separation S ∈ S ′. Let
S ′ = S1, . . . , Sm, where Si corresponds to the edge tir. Let Ti be the component of T \ {tir}
containing r for i ∈ {1, . . . ,m}. By the definition of w-heavy bag, χ(Ti) = B(Si)∪C(Si) for
i ∈ {1, . . . ,m}. Now, χ(r) =

󰁗m
i=1 χ(Ti) =

󰁗
S∈S′(B(S) ∪ C(S)) = βS′ .

Next, we consider the conditions of the definition of k-aligned. Since (T,χ) has adhesion
k, it follows that |C(S)| ≤ k for all S ∈ S, so condition (1ii) holds with δ(S) = C(S)

for all S ∈ S ′ (note that for every S ∈ S, C(S) ⊆ χ(r) = βS′). Condition (1iii) holds
since w(A(S)) < 1/2 for all S ∈ S. By Theorem 2.6, S is laminar, so S ′ is laminar. Since
χ(r) =

󰁗
S∈S′(B(S) ∪ C(S)), it follows that S ′ is A-laminar. Now, condition (2) holds by

Lemma 4.1. This completes the proof. □
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The proof of Theorem 4.4 illustrates the motivation behind the conditions included in
the definition of k-aligned, and Theorem 4.5 reveals the inspiration behind the definition
of central bag. The only condition not mentioned in either proof is condition (1i), and
indeed, all of the machinery developed so far works perfectly well even if condition (1i)
is excluded. However, condition (1i) is necessary in every application to help bound the
number of separations of S that cross a balanced separator of βS . Since condition (1i) is
always required for this purpose (at least in currently-known applications), we include it as
part of the definition of k-aligned here.

The proof of Theorem 4.5 also illustrates another important concept. Recall that S ′

consisted of only the separations corresponding to edges of T incident with the w-heavy
vertex r. This is equivalent to the following observation. Let S be a collection of separations
and let S, S ′ ∈ S such that B(S)∪C(S) ⊆ B(S ′)∪C(S ′). Then, βS = βS\{S′}. In other words,
the separation S ′ is not an essential element of the collection S. Under these conditions, we
say that S is a shield for S ′. We say that a collection of separations S is shield-minimal if
B(S)∪C(S) ∕⊆ B(S ′)∪C(S ′) for all distinct pairs S, S ′ ∈ S. In the remainder of this thesis,
we will normally restrict our attention to shield-minimal collections of separations.

5. Star cutsets

In this section, we explain how to use star cutsets to construct a collection of separations
that can be used with the central bag method. A star cutset of a connected graph G is a
set C ⊆ V (G) such that G \C is not connected and there exists x ∈ C such that C ⊆ N [x].
Star cutsets appear often in structure theorems for major graph classes. For example, they
are a type of decomposition for both perfect graphs and even-hole-free graphs, two major
hereditary graph classes that are considered in several results in this thesis. See [11] and [12]
for surveys on perfect graphs and even-hole-free graphs, respectively; both surveys highlight
the ways that star cutsets contribute to the respective structure theorems. In this section, we
don’t yet mention the connection between star cutsets and structure theorems, but instead
focus on properties of star cutsets and how they interact with the central bag method.

Let G be a graph and let w be a normal weight function on G. A vertex v ∈ V (G)

is called w-unbalanced if there is a component D of G \ N [v] such that w(D) > 1
2
. A

vertex v is w-balanced if it is not w-unbalanced. Let v be a w-unbalanced vertex of G. The
canonical star separation for v, denoted S(v) = (A(v), C(v), B(v)), is defined as follows:
B(v) is the component of G \ N [v] with w(B(v)) > 1

2
, C(v) = N(B(v)) ∪ {v}, and A(v) =

V (G) \ (B(v) ∪ C(v)).

Lemma 5.1. Let G be a graph and let w be a normal weight function on G. Let U be the
set of w-unbalanced vertices of G. Let x, y ∈ U such that x ∈ A(y). Then, B(y) ⊆ B(x) and
A(x) ⊆ A(y) ∪ {y}.

Proof. Since x ∈ A(y) and N(A(y)) ⊆ C(y), it follows that N [x] ⊆ A(y) ∪ C(y). Therefore,
B(y) is contained in a component of G \ N [x], and since w(B(y)) > 1

2
, it follows that

B(y) ⊆ B(x). For every u ∈ C(y) \ {y}, it holds that u has a neighbor in B(y) and thus in
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B(x). Since A(x) is anticomplete to B(x), it follows that (C(y)\{y})∩A(x) = ∅. Therefore,
A(x) ⊆ A(y) ∪ {y}. □

Fix an ordering O of V (G). Let U ⊆ V (G) be the set of w-unbalanced vertices of G. Two
vertices x, y ∈ U are star twins if B(x) = B(y), C(x) \ {x} = C(y) \ {y}, and A(x) ∪ {x} =

A(y) ∪ {y}.

u v

A(v)

C(v) \ {v} = C(u) \ {u}

B(v) = B(u)

Figure 6. Star twins u and v, where u and v may or may not be adjacent

Lemma 5.2. Let G be a graph and let w be a normal weight function on G. Let U be the
set of w-unbalanced vertices of G. Let x, y ∈ U such that x ∈ A(y) and y ∈ A(x). Then, x
and y are star twins.

Proof. Since x ∈ A(y) and A(y) is anticomplete to B(y), it follows that N [x] ⊆ A(y)∪C(y).
Therefore, B(y) is contained in a connected component of G \N [x]. Since w(B(y)) > 1

2
, it

follows that B(y) ⊆ B(x). By symmetry, B(x) ⊆ B(y), and so B(x) = B(y).
Let w ∈ C(y) \ {y}. Since every vertex of C(y) \ {y} has a neighbor in B(y), and

thus in B(x), it follows that w has a neighbor in B(x). Therefore, w ∈ C(x), and so
C(y)\{y} ⊆ C(x). By symmetry, C(x)\{x} ⊆ C(y). It follows that C(x)\{x} = C(y)\{y}.
Since A(x)∪C(x)∪B(x) = A(y)∪C(y)∪B(y), we conclude that A(x)∪ {x} = A(y)∪ {y},
and so x and y are star twins. □

Next, we define a relation ≤w
O on U as follows: for x, y ∈ U ,

x ≤w
O y if

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

x = y, or
x and y are star twins and O(x) < O(y), or
x and y are not star twins and y ∈ A(x).

Lemma 5.3. Let G be a graph, let w be a normal weight function on G, and let O be an
ordering of V (G). Let U ⊆ V (G) be the set of w-unbalanced vertices of G. Then, ≤w

O is a
partial order on U .

Proof. We show that ≤w
O is reflexive, antisymmetric, and transitive. By the definition, ≤w

O
is reflexive. Suppose x ≤w

O y and y ≤w
O x for x, y ∈ U . If x and y are star twins, then

x ≤w
O y implies that O(x) < O(y), and y ≤w

O x implies that O(y) < O(x), a contradiction.
Therefore, either x = y or x and y are not star twins, y ∈ A(x), and x ∈ A(y). Assume
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x and y are not star twins, y ∈ A(x), and x ∈ A(y). By Lemma 5.1, x ∈ A(y) implies
that B(y) ⊆ B(x) and A(x) ⊆ A(y) ∪ {y}, and y ∈ A(x) implies that B(x) ⊆ B(y) and
A(y) ⊆ A(x) ∪ {x}. Therefore, B(y) = B(x) and A(x) ∪ {x} = A(y) ∪ {y}, and so x and y

are star twins, a contradiction. It follows that x = y, and so ≤w
O is antisymmetric.

Finally, suppose x ≤w
O y and y ≤w

O z for distinct x, y, z ∈ U . Since x ∕= y, it follows that
y ∈ A(x); similarly, since y ∕= z, it follows that z ∈ A(y). By Lemma 5.1, A(y) ∪ {y} ⊆
A(x) ∪ {x}, and A(z) ∪ {z} ⊆ A(y) ∪ {y}. Therefore, z ∈ A(x). If x and z are not
star twins, then x ≤w

O z, as desired, so we may assume that x and z are star twins and
A(z) ∪ {z} = A(x) ∪ {x}. Then, A(x) ∪ {x} = A(y) ∪ {y} = A(z) ∪ {z}. By Lemma 5.2, x
and y are star twins and y and z are star twins. Now, O(x) < O(y) and O(y) < O(z), and
so O(x) < O(z). It follows that x ≤w

O z, and so ≤w
O is transitive. □

Let G be a graph, let w be a normal weight function on G, let O be an ordering of V (G),
and let U ⊆ V (G) be the set of w-unbalanced vertices of G. Let X ⊆ U . The core of X,
denoted Corew(X), is the set of ≤w

O-minimal elements of X. By Corew(G) we denote the
set of all ≤w

O-minimal elements of U ; that is, core of the set of all w-unbalanced vertices of
G. We typically assume that O is fixed in advance, and we omit the subscript w when the
weight function is clear in context.

We need the following useful result, which is a natural corollary of the previous lemmas.

Lemma 5.4. Let G be a graph and let w be a normal weight function on G. Let x, y ∈
Core(G). Then, x ∕∈ A(y) and y ∕∈ A(x).

Proof. Suppose that x ∈ A(y). If x and y are not star twins, then y ≤w
O x and so x ∕∈ Core(G),

a contradiction. Therefore, x and y are star twins, and y ∈ A(x). Assume up to symmetry
between x and y that O(x) < O(y). But now x ≤w

O y, so y ∕∈ Core(G), a contradiction. This
completes the proof. □

Lemma 5.5. Let G be a graph and let w be a normal weight function on G. Let X ⊆ Core(G)

be independent. Then, for every x, x′ ∈ X, it holds that x ∈ B(x′) and C(x) ∩ A(x′) = ∅.

Proof. By Lemma 5.4, x ∕∈ A(x′), and since X is independent, it follows that x ∕∈ C(x′).
Therefore, x ∈ B(x′). Since C(x) ⊆ N [x] and A(x′) is anticomplete to B(x′), it follows that
C(x) ∩ A(x′) = ∅. □

Next, we prove a significant result regarding collections of canonical star separations.

Theorem 5.6. Let G be a graph and let w be a normal weight function on G. Let X ⊆
Core(G) be independent, and let S = {S(x) | x ∈ X} be the set of canonical star separations
for the vertices of X. Let q = maxS∈S |C(S)|. Then, S is q-aligned.

Proof. Let S ∈ S and let x ∈ X be such that S = S(x).

(4) C(S) ⊆ βS for all S ∈ S.

Let S ′ ∈ S \ {S} and let y ∈ X \ {x} be such that S ′ = S(y). By Lemma 5.4, it follows
that x ∕∈ A(y). Since X is independent and y is complete to C(y) \ {y}, it follows x ∕∈ C(y).
Therefore, x ∈ B(y). Since x is complete to C(x) \ {x} and N(B(y)) ⊆ C(y), it follows that
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C(x) ⊆ B(y)∪C(y). This holds for all y ∈ X \ {x}; thus C(x) ⊆
󰁗

x∈X(C(x)∪B(x)) = βS .
This proves (4).

Since x ∈ C(S) ⊆ N [x], it follows that C(S) is connected, and by (4), C(S)∩βS = C(S), so
condition (1i) holds. Let δ(S) = C(S). By the definition of q, it follows that |C(S)| ≤ q and
(A(S), C(S), B(S)) is a separation of G, so condition (1ii) holds. Since x is w-unbalanced,
it follows that w(B(S)) > 1

2
, and so w(A(S)) < 1

2
; thus condition (1iii) holds.

Finally, let D be a component of
󰁖

S∈S A(S) = V (G) \ βS . Let S ∈ S be such that
D ∩ A(S) ∕= ∅. By (4), C(S) ⊆ βS . Since N(A(S)) ⊆ C(S), it follows that D ⊆ A(S).
Therefore, condition (2) holds. □

In view of Theorem 5.6, we also define a canonical anchor map for k-aligned collections of
canonical star separations. Let S be a q-aligned sequence of canonical star separations. The
canonical anchor map δ∗ for S is defined such that for all S(v) ∈ S, the anchor for S(v) is
δ∗(S) = v. The canonical anchor map for collections of canonical star separations satisfies
the property that δ∗ is injective, which is convenient for arranging piece 3 of the central bag
method.

We finish this section on star cutsets with an observation about central bags for certain
collections of canonical star separations.

Lemma 5.7. Let G be a graph and let w be a normal weight function on G. Let U be the
w-unbalanced vertices of G, let S = {S(v) | v ∈ Core(G)}, and let βS be the central bag for
S. Then, βS ∩ U = Core(G).

Proof. By the definitions of S and βS ,

βS =
󰁟

v∈Core(G)

(B(v) ∪ C(v)).

First, we show that Core(G) ⊆ βS . Let u ∈ Core(G). By Lemma 5.4, it follows that
u ∈ B(v) ∪ C(v) for all v ∈ Core(G). Therefore, u ∈ βS , and so Core(G) ⊆ βS .

Next, we show that βS ∩ U ⊆ Core(G). Let u ∈ βS ∩ U and suppose u ∕∈ Core(G). Then,
there exists v ∈ Core(G) such that v ≤w

O u, and so by the definition of ≤w
O, u ∈ A(v). But

βS ⊆ B(v) ∪ C(v), contradicting that u ∈ βS . Therefore, βS ∩ U ⊆ Core(G).
Since Core(G) ⊆ βS and βS ∩ U ⊆ Core(G), it follows that βS ∩ U = Core(G). □

6. Revisions of collections of separations

In this section, we explain how to revise certain collections of separations to create a k-
aligned collection of separations. The purpose of the revision is to deal with collections of
separations S such that S is almost k-aligned, but fails to satisfy condition (1i): C(S) ∩ βS
is not necessarily connected for all S ∈ S.

Let G be a graph, let w be a normal weight function on G, and assume that G does
not have a w-balanced separator of size at most k. Let S = {S1, . . . , Sm} be an A-laminar
collection of separations with |C(S)| ≤ k for all S ∈ S. For each Si = (Ai, Ci, Bi), since
Ci is not a w-balanced separator, it holds that either w(Ai) > 1/2 or w(Bi) > 1/2; assume
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C1

C2C3

C4

A1

A2

A4

A3

Figure 7. An illustration of the central bag for a revision of a laminar collec-
tion of separations. The central bag includes the center circle, plus the drawn
vertices in A1, A2, A3, and A4.

that w(Ai) <
1
2

and w(Bi) >
1
2
, following our usual convention. We also assume that S is

shield-minimal. Finally, we assume that for each Si = (Ai, Ci, Bi), it holds that G[Ai ∪ Ci]

is connected.
For every 1 ≤ i ≤ m, if Ci ∕= Cj for all j < i, let Xi ⊆ Ai be inclusion-wise minimal

such that Xi ∪ Ci is connected; otherwise, let Xi = ∅. Let S ′
i = (Ai \Xi, Xi ∪ Ci, Bi). Let

X(Si) := Xi. Under these conditions, we call S ′ = {S ′
1, . . . , S

′
m} a revision of S. Note that

revisions of S are not necessarily unique, since the choice of Xi may not be unique.

Lemma 6.1. Let G be a graph, let w be a normal weight function on G, and assume that
G does not have a w-balanced separator of size at most k. Let S be an A-laminar collection
of separations of G such that |C(S)| ≤ k for all S ∈ S and let S ′ be a revision of S. Then,
S ′ is k-aligned.

Proof. Let S = {S1, . . . , Sm}. First, we show:

(5) For all i ∈ {1, . . . ,m} and j ∈ {1, . . . ,m} \ {i}, it holds that C(S ′
i) ⊆ C(S ′

j) ∪B(S ′
j).

Since S is A-laminar, it holds that C(Si) ∪ A(Si) ⊆ C(Sj) ∪ B(Sj). By construc-
tion, Xi ⊆ A(Si) and C(S ′

i) = C(Si) ∪ Xi. Therefore, C(S ′
i) ⊆ C(Sj) ∪ B(Sj). Finally,

C(Sj) ⊆ C(S ′
j) and B(Sj) = B(S ′

j), so C(S ′
i) ⊆ C(S ′

j) ∪B(S ′
j). This proves (5).

Let S ′
i ∈ S ′. By (5), it follows that C(S ′

i) ⊆
󰁗

S′∈S′ B(S ′)∪C(S ′), so C(S ′
i)∩ βS′ = C(S ′

i).
By construction, C(S ′

i) is connected. Therefore, condition (1i) holds. Condition (1ii) holds
with δ(S ′

i) = C(Si). Since A(S ′
i)∪ (C(S ′

i)\ δ(S ′
i)) = A(Si) and w(A(Si)) <

1
2
, condition (1iii)

holds.
Finally, we show that S ′ is A-laminar. Let i ∈ {1, . . . ,m} and j ∈ {1, . . . ,m}\{i}. By (5),

it follows that C(S ′
i) ∩ A(S ′

j) = ∅. Since S is A-laminar, it follows that A(Si) ∩ A(Sj) = ∅.
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By construction, A(S ′
i) ⊆ A(Si) and A(S ′

j) ⊆ A(Sj), so A(S ′
i) ∩ A(S ′

j) = ∅. Therefore, S ′ is
A-laminar, and thus, by Lemma 4.1, condition (2) of the definition of k-aligned holds. This
completes the proof. □

The next lemma states a relationship between the central bag for S and the central bag
for a revision S ′ of S.

Lemma 6.2. Let G be a graph, let w be a normal weight function on G, and assume that
G does not have a w-balanced separator of size at most k. Let S be an A-laminar collection
of separations of G such that |C(S)| ≤ k for all S ∈ S and let S ′ be a revision of S. Then,
βS′ = βS ∪

󰁖
S′∈S′ X(S ′).

Proof. For every Si ∈ S, it holds that βS ⊆ B(Si)∪C(Si) ⊆ B(S ′
i)∪C(S ′

i), and so βS ⊆ βS′ .
Also, since S is A-laminar and X(S ′

i) ⊆ A(Si), it follows that X(S ′
i) ⊆ B(S ′) ∪C(S ′) for all

S ′ ∈ S ′. Therefore,
󰁖

S′∈S′ X(S ′) ⊆ βS′ .
Recall that β′

S =
󰁗

S′∈S′(B(S ′) ∪ C(S ′)). Let x ∈ βS′ \ βS . It follows that there exists
S ∈ S such that x ∕∈ B(S) ∪ C(S). Therefore, x ∈ X(S), and so βS′ \ βS ⊆

󰁖
S∈S′ X(S ′).

This completes the proof. □
We also prove the following useful lemma.

Lemma 6.3. Let G be a graph and let S = (A,C,B) be a separation of G such that |C| ≤ k.
Assume that A ∪ C is connected and let X ⊆ A be inclusion-wise minimal such that X ∪ C

is connected. Then, for all u ∈ X ∪ C, it holds that |N(u) ∩X| ≤ k.

Proof. Let u ∈ X ∪ C and suppose for the sake of contradiction that {x1, . . . , xk+1} ⊆
N(u) ∩X. Since X is inclusion-wise minimal such that X ∪ C is connected, it follows that
X \ {xi} ∪ C is not connected for all i ∈ {1, . . . , k + 1}. Let ci ∈ C be a vertex of C such
that there is no path from u to ci in G[X \ {xi} ∪ C] for i ∈ {1, . . . , k + 1}. Since |C| ≤ k,
it follows that there exist 1 ≤ i < j ≤ k + 1 such that ci = cj. Let Pi be a path from u to
ci in G[X ∪C]. Because Pi is not a path in G[X \ {xi} ∪C], it follows that xi is the unique
neighbor of u in Pi. But now Pi is a path from u to cj in G[X \ {xj} ∪ C], a contradiction.
This completes the proof. □

7. Tree decompositions and k-blocks

One neat application of the method described in the previous subsection is to prove a
relationship between treewidth and a graph substructure called a k-block. Let G be a graph.
A k-block of G is a set X ⊆ V (G) such that |X| ≥ k and for every pair x1, x2 ∈ X and every
set C ⊆ V (G) \ {x1, x2} with |C| < k, it holds that x1 and x2 are in the same connected
component of G \ C.

The largest k such that there exists a k-block in a graph G is an easy lower bound for the
treewidth of G. First we need the following:

Proposition 7.1. Let G be a graph and let (T,χ) be a tree decomposition of G. Let X ⊆
V (G) be such that for every x1, x2 ∈ X, there exists tx1x2 ∈ V (T ) where {x1, x2} ⊆ χ(tx1x2).
Then, there exists t ∈ V (T ) such that X ⊆ χ(t).
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Proposition 7.2. Let G be a graph and let k be a positive integer. Suppose X ⊆ V (G) is a
k-block of G. Then, tw(G) ≥ k − 1.

Proof. Let (T,χ) be a tree decomposition of G. If there exists t ∈ V (T ) such that X ⊆ χ(t),
then tw(G) ≥ |X| − 1 = k − 1, so we may assume that there does not exist t ∈ V (T ) such
that X ⊆ χ(t). By Proposition 7.1, there exist x1, x2 ∈ X such that {x1, x2} ∕⊆ χ(t) for all
t ∈ χ(t). Let t1, t2 ∈ V (T ) be such that x1 ∈ χ(t1), x2 ∈ χ(t2), and t1 and t2 are the closest
pair of vertices of T with this property. Let t3 be the vertex adjacent to t1 on the path from
t1 to t2 in T , so x1 ∕∈ χ(t3) and x2 ∕∈ χ(t3). Then, x1 and x2 are in different components of
G \ (χ(t1) ∩ χ(t3)). By the definition of k-block, it follows that |χ(t1) ∩ χ(t3)| ≥ k, and thus
that |χ(t1)| ≥ k. It follows that the width of (T,χ) is at least k−1 for all tree decompositions
(T,χ) of G, so tw(G) ≥ k − 1. □

Proposition 7.2 shows that the presence of large k-blocks in a graph forces large treewidth.
Conversely, the absence of k-blocks in a graph leads to the existence of a special type of tree
decomposition. In [13], the following is proven.

Theorem 7.3 ([13], Theorem 1). Let G be a graph and let k be a positive integer. Suppose
that G has no (k + 1)-block. Then, G has a tree decomposition (T,χ) such that (T,χ) has
adhesion less than k and every torso of (T,χ) has at most k vertices of degree at least
2k(k − 1).

Theorem 7.3 allows us to make a reduction between the treewidth of graphs of bounded
degree and the treewidth of graphs with no k-block. Specifically, we can prove the following
theorem:

Theorem 7.4. Let G be a hereditary graph class. Suppose that every graph G ∈ G of
maximum degree ∆ has tw(G) ≤ f(∆), where f : Z → Z. Let G ∈ G and k > 0 be such that
G has no (k + 1)-block. Then,

tw(G) ≤ 2f((22k(k−1) − 1)(1 + k))(2k2(k − 1) + 1) + 2k + 2.

Proof. Suppose for a contradiction that tw(G) > 2f((22k(k−1) − 1)(1 + k))(2k2(k− 1) + 1) +

2k + 2. By Lemma 2.4, there exists a normal weight function w on G such that G does not
have a w-balanced separator of size at most f((22k(k−1) − 1)(1 + k))(2k2(k− 1) + 1) + k+ 1.
Since f((22k(k−1)−1)(1+k))(2k2(k−1)+1) ≥ 0, it follows that G does not have a w-balanced
separator of size at most k. Let (T,χ) be the tree decomposition of G given by Theorem
7.3, so (T,χ) has adhesion less than k and every torso of (T,χ) has at most k vertices of
degree at least 2k(k − 1). Let T be the laminar collection of separations corresponding to
(T,χ), as in Theorem 2.6. Because (T,χ) has adhesion less than k, it follows that |C(S)| < k

for all S ∈ T . Since G does not have a w-balanced separator of size at most k, it follows
that (T,χ) is w-unbalanced. Let t ∈ V (T ) be the w-heavy vertex of T as in Lemma 2.2.
Let S ⊆ T be the separations of T corresponding to edges of T incident with t. Let S ′

be a revision of S and let βS′ be the central bag for S ′. By Lemma 6.2 and Theorem 4.5,
βS′ = βS ∪

󰁖
S′∈S′ X(S ′) = χ(t) ∪

󰁖
S′∈S′ X(S ′).

Let F ⊆ χ(t) be the vertices of χ(t) of degree at least 2k(k − 1) in the torso of χ(t). By
Theorem 7.3, |F | ≤ k. First, we claim that βS′ \F has maximum degree at most 2k(k2− 1).
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By the choice of F , it follows that χ(t) \F has maximum degree 2k(k− 1). For every vertex
v ∈ χ(t), if v ∈ C(S) for some S ∈ S, then v is complete to C(S) in the torso of χ(t).
Therefore, every vertex of χ(t) \ F is in C(S) for at most

2k(k−1)󰁛

i=1

󰀕
2k(k − 1)

i

󰀖
= 22k(k−1) − 1

separations S ∈ S. Finally, by Lemma 6.3, since N(X(S ′
i)) ⊆ C(Si) for all S ′

i ∈ S ′, and since
|C(Si)| ≤ k for all S ′

i ∈ S ′, it follows that the maximum degree of βS′\F is (22k(k−1)−1)(1+k).
Since βS′ \ F has maximum degree (22k(k−1) − 1)(1 + k), it follows from the assumptions

of the theorem that tw(βS′ \ F ) ≤ f((22k(k−1) − 1)(1 + k)). We want to show that βS′ has a
wS′-balanced separator of bounded size. We may assume that wS′(F ) < 1/2, otherwise F is a
wS′-balanced separator of βS′ of bounded size. Let w : β′

S \F → [0, 1] be given by restricting
wS′ to βS′ \ F and normalizing; that is,

w(v) =
wS′(v)

1− wS′(F )

for all v ∈ βS′ \ F . By Lemma 2.3, βS′ \ F has a w-balanced separator X with |X| ≤
f((22k(k−1)−1)(1+k))+1. Let Y = X∪F . Now, the components of (βS′\F )\X are the same
as the components of βS′ \Y . Let D be such a component. Since 0 ≤ wS′(F ) < 1/2, it follows
that w(D) ≥ wS′(v). Since X is a w-balanced separator of βS′ \F , it follows that w(D) ≤ 1/2,
and so wS′(D) ≤ 1/2. It follows that Y is a wS′-balanced separator of βS′ of size at most
f((22k(k−1)−1)(1+k))+k+1. Finally, we apply Theorem 4.4. Suppose that S ∈ S ′ crosses Y .
Let S ′

F be the set of separations S ′ ∈ S ′ such that C(S ′) ⊆ F . Let S ′′ = S ′ \S ′
F . Since C(S)

is connected, it follows that C(S)∩Y ∕= ∅ and that C(S) ∕⊆ Y , so S ∈ S ′′ and C(S)∩X ∕= ∅.
Every vertex in X is in at most 2k(k− 1) separations of S ′′, so it follows that the number of
separations of S ′ that cross Y is at most |X| ·2k(k−1) = f((22k(k−1)−1)(1+k))(2k(k−1)).

Now, by Theorem 4.4, G has a w-balanced separator of size (f((22k(k−1)− 1)(1+ k))+ k+

1) + f((22k(k−1) − 1)(1 + k))(2k(k − 1) · k = f((22k(k−1) − 1)(1 + k))(2k2(k − 1) + 1) + k + 1,
a contradiction. This completes the proof. □

Theorem 7.4 is intriguing in its own right: it reveals that from the point of view of having
bounded treewidth, for hereditary graph classes, the condition of having bounded degree
is equivalent to the condition of having no k-block. Let G be a hereditary graph class. If
G ∈ G has maximum degree ∆, then G has no (∆+1)-block. Therefore, if graphs in G with
no k-block have bounded treewidth, then graphs in G with bounded degree have bounded
treewidth. Theorem 7.4 shows that this is a necessary and sufficient relationship: graphs in
G with no k-block have bounded treewidth if and only if graphs in G with bounded degree
have bounded treewidth.
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