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Introduction

An independent set in a graph G is a set | C V/(G) such that no edge in
E(G) has both endpoints in /.

MAXIMUM WEIGHT INDEPENDENT SET problem: find a maximum
weight independent set in polynomial time



Treewidth

A tree decomposition of a graph G is (T, ), where T is a tree and
B: V(T) — 2(C) is a map from vertices of T to subsets of V/(G), such
that

* Utev(T) B(t) = v(G),
o for all viv, € E(G), there exists t € V(T) such that vi, v» € 5(t),
and

e forall v e V(G), the set {t € V(T): v € B(t)} induces a
connected subtree of T

The width of (T, ) is max,cy (1) |B(t)| — 1. The treewidth of a graph G
is the minimum width of a tree decomposition of G.



Treewidth

MAXIMUM WEIGHT INDEPENDENT SET is an instance of MAXIMUM
WEIGHT INDUCED SUBGRAPH OF BOUNDED TREEWIDTH:

e Independent sets have treewidth 0. If / is an independent set, (T, )
is a tree decomposition of /, where V(T) = V(I) and 5(t) = t for
all t € V(T)



Definitions

A graph G is chordal if every cycle has a chord. A chordal completion of
G is a graph G + F, where F C (V%)) \ E(G), such that G + F is
chordal. A chordal completion G + F is minimal if G + F’ is not chordal
forany F' C F

A potential maximal clique (PMC) of G is a maximal clique of a minimal
chordal completion G + F.



Tree decompositions and PMCs

A graph G is chordal if and only if there exists a tree decomposition
(T, B) of G such that every bag is a maximal clique in G. If G is chordal,
such a tree decomposition is called a clique tree of G.

Lemma

If G + F is a minimal chordal completion of G and (T, () is a clique tree
of G + F, then (T, ) is a tree decomposition of G where every bag is a
PMC of G.



I-good Chordal Completions

Let G be a graph and let / be an independent set of G. A minimal
chordal completion G + F is /-good if enN/ = for all e € F.
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I-good Chordal Completions

Let G be a graph and let / be an independent set of G. A minimal
chordal completion G + F is /-good if enN/ = for all e € F.

).

Maximum weight independent set in an /-good minimal chordal
completion of G <= maximum weight independent set in G



I-good Chordal Completions

Lemma
Let G be a graph. For every independent set | of G, there exists an
I-good minimal chordal completion of G.

Proof.

Let / be an independent set of G and let G + F’ be the graph given by
turning V(G) \ / into a clique. Then, G + F’ is chordal. It follows that
there exists F C F’ such that G + F is an /-good minimal chordal
completion.



The PMC method

Theorem (Bouchitte, Todinca)
Given a list I of all PMCs of G, one can find a maximum weight
independent set of G in time polynomial in || and |V (G)].

Corollary

If G has polynomially many PMCs, then one can find a maximum weight
independent set in G in polynomial time.
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Minimal separators

A minimal separator of a graph G is a set S C V/(G) such that there exist
two connected components L, R of V(G)\ S with N(L) = N(R) = S.
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Minimal separators

A minimal separator of a graph G is a set S C V/(G) such that there exist
two connected components L, R of V(G)\ S with N(L) = N(R) = S.

Every s € S has a neighbor in L and a neighbor in R.

12



Minimal separators and PMCs

Lemma
A graph G has polynomially many minimal separators if and only if G has
polynomially many potential maximal cliques.

Lemma
The minimal separators of a graph G can be listed in time polynomial in
the number of minimal separators of G.

Lemma
Given a list S of all minimal separators of G, the potential maximal
cliques of G can be listed in time polynomial in S.
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Exponentially many minimal separators

k-prism has 2¥ — 2 minimal separators:
p p
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Exponentially many minimal separators

k-theta, k-pyramid, k-turtle
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Exponentially many minimal separators

4

k-theta, k-pyramid, k-turtle
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Exponentially many minimal separators

Theorem (A., Chudnovsky, Dibek, Thomassé, Trotignon, Vuskovi¢)
If G is (theta, pyramid, prism, turtle)-free, then G has polynomially many
minimal separators.
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The PMC method

Theorem (Lokshtanov, Vatshelle, Villanger)

Given a list T1 of vertex sets of G, one can find in time polynomial in ||
and |V(G)| a maximum weight independent set | such that there exists a
tree decomposition (T, 3) of G such that 5(v) € I and |B(v)N 1| <1
for all v e V(T).

Method: Need to find a polynomial-size list [1 of PMCs of G such that
for a maximum independent set / of G, every PMC of some /-good
minimal chordal completion is in I1

19



Ps-free graphs

Theorem (Lokshtanov, Vatshelle, Villanger)

Given a Ps-free graph G, one can compute in polynomial time a
polynomial-size list T of vertex sets of G such that for every maximal
independent set | of G, there exists an I-good minimal chordal
completion G + F of G such that every maximal clique of G + F is in IN.
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Ps-free graphs

Theorem (Grzesik, Klimo3ova, Pilipczuk, Pilipczuk)

Given a Pg-free graph G, one can compute in polynomial time a
polynomial-size list T of vertex sets of G such that for every maximal
independent set | of G, there exists an I-good minimal chordal
completion G + F of G such that every maximal clique of G + F is in IN.
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Containers

Let F be an induced subgraph of G. An F-container of a set C C V(G)
isaset AC V(G)suchthat CCAand ANF=CNF.

Idea: Find /-containers of minimal separators and potential maximal

cliques of G.
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The PMC container method

Theorem

Suppose for a graph G, we are given a polynomial-size set I of subsets of
V(G) such that for every independent set | of G and every PMC Q of G,
if |V(1)N Q| <1, then N has an I-container for Q. Then, one can in
polynomial time find a maximum weight independent set of G.
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The PMC container method

Theorem

Suppose for a graph G and an integer k > 0, we are given a
polynomial-size set I of subsets of V(G) such that for every induced
subgraph F of G of treewidth less than k and every PMC Q of G, if
[V(F)N Q| < k, then T has an F-container for Q. Then, one can in
polynomial time find a maximum weight induced subgraph of G of
treewidth less than k.
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Results

Let C be the class of graphs with no hole of length greater than 5 and no
extended Cs as an induced subgraph.

Extended Gs
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Results

Theorem

Given a graph G € C and an integer k, one can in time n®*) compute a
list X of polynomial size such that for every induced subgraph F of
treewidth less than k and every potential maximal clique 2 of G, there
exists S € X such that S is an F-container for €.

MAXIMUM WEIGHT INDEPENDENT SET in long-hole-free graphs can be
solved in polynomial time.
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Questions?
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