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Introduction

A tree decomposition (T , χ) of a graph G is a tree T and a map
χ : V (T )→ 2V (G), such that

(i) for all v ∈ V (G ), there exists t ∈ V (T ) such that v ∈ χ(t)
(ii) for all v1v2 ∈ E (G ), there exists t ∈ V (T ) such that v1, v2 ∈ χ(t)
(iii) for all v ∈ V (G ), the set {t ∈ V (T ) : v ∈ χ(t)} induces a

connected subtree of T

The width of (T , χ) is maxt∈V (T ) |χ(t)| − 1.

The treewidth of G is the minimum width of a tree decomposition of G .
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Introduction

Bounded treewidth → efficient algorithms

Which graphs have bounded treewidth?

Look at “substructure obstructions”
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Introduction

A graph H is a minor of G if H can be formed from G by vertex and
edge deletion and edge contraction

Grid Minor Theorem (Robertson and Seymour, ’91)

If tw(G ) > f (k), then G contains a k × k grid as a minor.
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Introduction

A graph H is a contraction of G if H can be formed from G by edge
contraction

Theorem (Fomin, Golovach, Thilikos, ’11)

If tw(G ) > f (k), then G contains one of the following graphs as a
contraction.
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Introduction

Theorem (Sintiari and Trotignon, ’20)
For all k there exist graphs G with no K4 and no even hole such that
tw(G ) > k .

7



Introduction

Question
What are the induced subgraph obstructions to bounded treewidth in
graphs with maximum degree δ?

Conjecture (Aboulker, Adler, Kim, Sintiari, Trotignon, ’20)

If G has maximum degree δ and no Wk×k or L(Wk×k), then
tw(G ) < f (k, δ).
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Results (Preview)

Theorem 1 (A., Chudnovsky, Vuskovic, ’20)
Even-hole-free graphs with bounded degree have bounded treewidth.

Theorem 2 (A., Chudnovsky, Dibek, Rzazewski, ’21)

If G has maximum degree δ, no St,t,t , and no L(Sub(Wk×k)), then
tw(G ) < f (δ, t, k).

Theorem 3 (A., Chudnovsky, Dibek, Hajebi, Spirkl, Vuskovic, ’21)
If G has maximum degree δ, no t-theta, no t-pyramid, and no
L(Sub(Wk×k)), then tw(G ) < f (δ, t, k).

Theorem 4 (A., Chudnovsky, Dibek, Hajebi, Spirkl, ’21)
Let T be a subcubic caterpillar with b branch vertices. If G has
maximum degree δ and no T or L(T ), then tw(G ) < f (δ, b).
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Balanced separators
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Treewidth and balanced separators

Theorem (Harvey and Wood)

If G has a (w , c)-balanced separator of size k for every
w : V (G )→ [0, 1] such that there exists S ⊆ V (G ) such that w(v) = 1

|S|
if v ∈ S and w(v) = 0 otherwise, then tw(G ) < k

1−c .

Theorem (Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk,
Pilipczuk, Saurabh)

If tw(G ) ≤ k , then G has a (w , 1
2 )-balanced separator of size k + 1 for all

weight functions w .
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Balanced separators

G has no d-bounded (w , c)-balanced separator:
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Separations

A separation of a graph G is a triple (A,C ,B), such that
A∪C ∪B = V (G ), A, B, and C are disjoint, and A is anticomplete to B.

Two separations (A1,C1,B1) and (A2,C2,B2) are non-crossing if, up to
symmetry, A1 ∪ C1 ⊆ B2 ∪ C2 and A2 ∪ C2 ⊆ B1 ∪ C1.

A1 C1 B1

A2 ∅ ∅
C2 ∅
B2

A collection of separations S is laminar if for every S1,S2 ∈ S, S1 and S2

are non-crossing
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Laminar collections of separations

Theorem (Robertson and Seymour, ’91)
There is an equivalence between laminar collections of separations of G
and tree decompositions of G .
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Separations

Our separations (A,C ,B) are

• strongly t-bounded: C ⊆ N t [v ] for every v ∈ C and some t < d ;
and thus

• (1− c)-skewed: Since C is not a d-bounded (w , c)-balanced
separator, w(A) < 1− c ; and

• loosely laminar

A1 C1 B1

A2 ∅
C2 ∅
B2
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Central bags

If S is loosely laminar, the central bag for S, βS , is:

βS =
⋂
S∈S

B(S) ∪ C (S).
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Central bags
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Central bags

Lemma

If Y is a (d − t)-bounded (wS , c)-balanced separator of βS , then
Y ′ = N t [Y ] is a d-bounded (w , c)-balanced separator of G .
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Separation dimension

The dimension of S is the minimum k such that there exists a partition
of S into k collections S1, . . . ,Sk , such that every Si is loosely laminar

Central bag for a collection S of dimension k :⋂
S∈S

B(S) ∪ C (S).
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Central bags

Central bag method: Given a collection S of separations, find an
induced subgraph βS of G such that if G has unbounded treewidth, then
βS has unbounded treewidth

Want: a collection S so that finding the treewidth of βS is easier than
finding the treewidth of G
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Canonical separations

For X ⊆ V (G ), the canonical separation for X , SX = (AX ,CX ,BX ), is:

• BX : largest weight component of G \ N[X ]

• CX : X ∪ (N(X ) ∩ N(BX ))

• AX : V (G ) \ (BX ∪ CX )
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Forcers

Let X ,Y ⊆ V (G ) and X ∩ Y = ∅. Then, X breaks Y if for every
component D of G \ N[X ], Y 6⊆ N[D].

Lemma

If X breaks Y , then Y ∩ AX 6= ∅.
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Forcers

A graph F is a X -forcer for G if for every Y ⊆ V (G ) such that Y is an
F in G , there exists X ⊂ Y such that X breaks Y \ X .

Let SX ⊆ {SX : X in G}

Lemma
The central bag for SX is F -free for every graph F such that F is an
X -forcer for G .
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Forcers

Find X -forcers F that intersect both sides of separations centered at X

The collection SX = {SX : X in G} has dimension at most f (δ)

The central bag βSX is F -free for every X -forcer F
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Results

Conjecture (Aboulker, Adler, Kim, Sintiari, Trotignon, ’20)
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Theorem 1 (A., Chudnovsky, Vuskovic, ’20)
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Results

Theorem 2 (A., Chudnovsky, Dibek, Rzazewski, ’21)

If G has maximum degree δ, no St,t,t , and no L(Sub(Wk×k)), then
tw(G ) < f (δ, t, k).

• Subdivided claws are forcers
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Results

Theorem 2 (A., Chudnovsky, Dibek, Rzazewski, ’21)

If G has maximum degree δ, no St,t,t , and no L(Sub(Wk×k)), then
tw(G ) < f (δ, t, k).

• Subdivided claws are forcers

• Base case: claw-free graphs
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Results

Theorem 3 (A., Chudnovsky, Dibek, Hajebi, Spirkl, Vuskovic, ’21)
If G has maximum degree δ, no t-theta, no t-pyramid, and no
L(Sub(Wk×k)), then tw(G ) < f (δ, t, k).
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Results

Theorem 4 (A., Chudnovsky, Dibek, Hajebi, Spirkl, ’21)
Let T be a subcubic caterpillar with b branch vertices. If G has
maximum degree δ and no T or L(T ), then tw(G ) < f (δ, b).
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Open questions

Prove or disprove the wall conjecture?

Find necessary induced subgraph obstructions to bounded treewidth?

Other applications of central bags?

Questions?
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