Laplacian Eigenvalues of Cographs

Tara Abrishami Ed Scheinerman

Joint Mathematics Meetings 2019

A graph G is a *cograph* if it can be generated from a single vertex by the operations of disjoint union and join:

- K_1 is a cograph.
- If G and H are cographs, then G + H is a cograph.
- If G and H are cographs, then $G \vee H$ is a cograph.

A cograph representation of a cograph C tracks the operations of join and disjoint union in the creation of C.

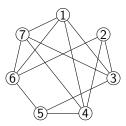


Figure 1: This is a cograph with cograph representation $(6+4+3) \lor (5+2+7 \lor 1).$

The Laplacian matrix of a graph G is given by L = D - A, where D is the degree matrix of G and A is the adjacency matrix of G.

- *L* is positive semidefinite.
- 0 is always an eigenvalue of *L*.
- The Laplacian spectrum is given by $0 \le \lambda_2 \le \ldots \le \lambda_n$, where n = |G|.

Proposition

Let C be a cograph. The Laplacian eigenvalues of C are nonnegative integers.

Proposition

Let G be a graph. G is a cograph if and only if for all induced subgraphs H of G, the Laplacian eigenvalues of H are integers.

Central question

What is the combinatorial meaning of cograph eigenvalues?

A graph G is a *threshold graph* if there exists a weight function of the vertices $f : V(G) \rightarrow \mathbb{R}$ such that

```
u \sim v if and only if f(u) + f(v) \geq 1.
```

Threshold graphs are a subclass of cographs.

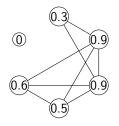


Figure 2: A threshold graph. The vertex labels are the values f(v).

Theorem (Merris)

Let T be a threshold graph. The Laplacian eigenvalues of T are the Ferrer's conjugates of the degree sequence of T.

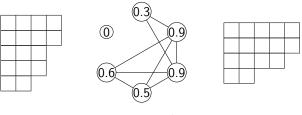


Figure 3: Degree sequence: [0, 2, 3, 3, 4, 4]. Eigenvalues: {0, 0, 2, 4, 5, 5}.

Proposition (Merris) Suppose C_1 and C_2 are cographs on n_1 and n_2 vertices, respectively. Let $\Lambda(C_1) = \{0, \lambda_2, \dots, \lambda_{n_1}\}$ and $\Lambda(C_2) = \{0, \gamma_2, \dots, \gamma_{n_2}\}$.

The spectrum of $C_1 + C_2$ is

$$\Lambda(C_1+C_2)=\{0,0,\lambda_2,\ldots,\lambda_{n_1},\gamma_2,\ldots,\gamma_{n_2}\}.$$

The spectrum of $C_1 \vee C_2$ is

$$\Lambda(C_1 \vee C_2) = \{0, \lambda_2 + n_2, \dots, \lambda_{n_1} + n_2, \\ \gamma_2 + n_1, \dots, \gamma_{n_2} + n_1, n_1 + n_2\}.$$

Proposition (Citation)

For any graph G, $\lambda_2(G) \leq \kappa(G)$, where $\lambda_2(G)$ is the second-smallest Laplacian eigenvalue of G, and $\kappa(G)$ is the vertex connectivity of G.

Proposition

Let C be a cograph. Then, $\lambda_2(C) = \kappa(C)$.

Proposition

Let C be a cograph, and let $\lambda_2(C)$ be the second-smallest eigenvalue of C. Then, $\lambda_2(C)$ is unique if and only if C has a unique minimum cut set S and C - S has exactly two components.

If $\lambda_2(C)$ is unique, then the Fiedler vector of C, $v_2(C)$, defines a partition of V(C) into three sets: the unique minimum cut set S and the two components of C - S.

Fiedler Vector Example

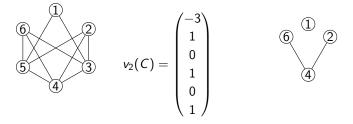


Figure 4: Example cograph C and its Fiedler Figure 5: C - S, vector $v_2(C)$. $\Lambda(C) = \{0, 2, 3, 4, 5, 6\}$. where $S = \{3, 5\}$.

Cograph Eigenvalue Results

Definition Let *G* be a graph. Two vertices *v* and *w* are *twins* if N(v) - w = N(w) - v.

Proposition

The property of being twins is an equivalence relation on the vertex set of G.

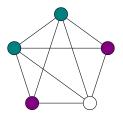


Figure 6: Example of twin vertices in a cograph.

The *twin partition* of a graph G is the unique partition of the vertex set such that every pair of vertices in the same part are twin vertices. The *twin numbers* of a graph G are the sizes of the parts of the twin partition.

Remark

Every twin part is either a clique or an independent set.

Every pair of vertices in the same twin part have the same degree.

Theorem

Let C be a cograph. Every Laplacian eigenvalue of C is the sum of twin numbers of C. Further, let $\{P_1, \ldots, P_n\}$ be the twin partition of C, and let $\{|P_1|, \ldots, |P_n|\}$ be the twin numbers of C. Every twin number $|P_k|$ contributes to d eigenvalues, where d = d(v) for $v \in P_k$ is the degree of the vertices in P_k .

Cograph Eigenvalue Example

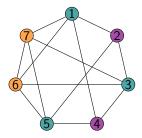


Figure 7: Cograph given by $(1 + 3 + 5) \lor (2 + 4 + 7 \lor 6)$. Its spectrum is $\{0, 3, 3, 4, 4, 5, 7\}$.

	2	2	3
0			
3			х
3			х
4	х	х	
4	х	х	
5		х	х
7	х	х	х

Table 1: Chart showing which twinnumber contributes to whicheigenvalue.

Threshold Eigenvalue Example

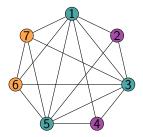


Figure 8: Threshold graph given by
$(1 \lor 3 \lor 5) \lor (2 + 4 + 7 \lor 6)$. Its
spectrum is $\{0, 3, 3, 5, 7, 7, 7\}$.

	2	2	3
0			
3			х
3			х
5		х	х
7	х	х	х
7	х	х	х
7	х	х	х

Table 2: Chart showing which twinnumber contributes to whicheigenvalue.

Twin Reduction Graph

Definition

The *twin reduction graph* of a cograph C is the induced subgraph formed by taking one vertex from each twin class of C.

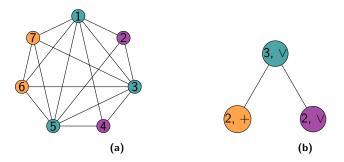


Figure 9: (a): A cograph given by $(1 \lor 3 \lor 5) \lor (2 + 4 + 7 \lor 6)$. (b) The twin reduction graph. The vertex labels are the twin numbers and the operations of the twin classes.

Let $R(C_1)$ and $R(C_2)$ be twin reduction graphs of cographs C_1 and C_2 . We say $R(C_1)$ and $R(C_2)$ are *equivalent* if the graphs are isomorphic and the twin numbers of the vertices are identical.

Proposition

Let C_1 and C_2 be cographs with equivalent reduction graphs $R(C_1)$ and $R(C_2)$. Let k be the number of twin numbers of C_1 and C_2 . Let I be the set of twin numbers whose operations are identical in $R(C_1)$ and $R(C_2)$. Then, C_1 and C_2 have at least

$$k + \sum_{i \in I} (|P_i| - 1)$$

eigenvalues in common.

Twin Reduction Example

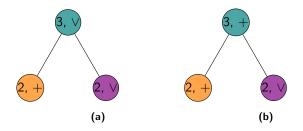


Figure 10: (a): Twin reduction graph of a cograph given by $(1 \lor 3 \lor 5) \lor (2 + 4 + 7 \lor 6)$ with spectrum $\{0, 3, 3, 5, 7, 7, 7\}$. (b): Twin reduction graph of a cograph given by $(1 + 3 + 5) \lor (2 + 4 + 7 \lor 6)$ with spectrum $\{0, 3, 3, 4, 4, 5, 7\}$.

Thank you to Dr. Scheinerman!