Proof methods in structural graph theory

Tara Abrishami

PACM Graduate Student Seminar, February 2021

An independent set in a graph G is a set $I \subseteq V(G)$ such that no edge in E(G) has both endpoints in I.

2

An independent set in a graph G is a set $I \subseteq V(G)$ such that no edge in E(G) has both endpoints in I.

Maximum independent set (MIS): Can we find an algorithm that, given a graph G, finds a maximum independent set of G in polynomial time?

2

An independent set in a graph G is a set $I \subseteq V(G)$ such that no edge in E(G) has both endpoints in I.

Maximum independent set (MIS): Can we find an algorithm that, given a graph G, finds a maximum independent set of G in polynomial time?

Answer: NO! MIS is NP-hard (Karp, 1972)

An independent set in a graph G is a set $I \subseteq V(G)$ such that no edge in E(G) has both endpoints in I.

Maximum independent set (MIS): Can we find an algorithm that, given a graph G, finds a maximum independent set of G in polynomial time?

Answer: NO! MIS is NP-hard (Karp, 1972)

Maximum independent set (MIS): Can we find an algorithm that, given a graph G with some constraints on G, finds a maximum independent set of G in polynomial time?

An induced subgraph of G is a subgraph of G formed by vertex deletions

Important induced subgraphs

- Cycle on *k* vertices *C_k*
- Path on k vertices P_k

If H is a graph, then H-free graphs are graphs with no induced H.

If $\mathcal H$ is a set of graphs, then $\mathcal H$ -free graphs are graphs with no induced H for every $H \in \mathcal H$.

Tree decompositions

A tree decomposition of a graph G is a partition of G into a "tree-like" structure. The treewidth of G measures how "close" to a tree G is.

Tree decompositions

A tree decomposition of a graph G is a partition of G into a "tree-like" structure. The treewidth of G measures how "close" to a tree G is.

Tree decompositions are useful for algorithms because of **dynamic programming**, a method which breaks a problem into pieces and then combines the results.

A separation of a graph G is a triple (A, C, B), such that $A \cup C \cup B = V(G)$, A, B, and C are disjoint, and A is anticomplete to B.

A separation of a graph G is a triple (A, C, B), such that $A \cup C \cup B = V(G)$, A, B, and C are disjoint, and A is anticomplete to B.

If G has a balanced separation, then algorithmic problems can be solved quickly using recursion.

If (A, C, B) is a separation of G, assume that B is very large.

If (A, C, B) is a separation of G, assume that B is very large.

Two separations (A_1, C_1, B_1) and (A_2, C_2, B_2) are non-crossing if A_1 and A_2 are disjoint and anticomplete.

Central bag

Given a collection S of non-crossing separations, the **central bag for** S, denoted β , is defined as follows:

$$\beta = \bigcap_{(A,C,B)\in\mathcal{S}} (B\cup C)$$

Usually, more restrictions on a graph's structure = better information and better algorithms

Example: graphs with no odd cycle

Usually, more restrictions on a graph's structure = better information and better algorithms

Example: graphs with no odd cycle

Want: central bags to be structurally restricted

Usually, more restrictions on a graph's structure = better information and better algorithms

Example: graphs with no odd cycle

Want: central bags to be structurally restricted

Tool: Forcers!

An graph F is a **forcer** for G if for every induced subgraph H of G isomorphic to F, there exists a separation (A, C, B) of G such that $F \cap A \neq \emptyset$.

Approach outline

Approach outline:

- 1. List some forcers $\mathcal F$ for a graph $\mathcal G$
- 2. List all the separations ${\mathcal S}$ that correspond to forcers in ${\mathcal F}$
- 3. Partition the separations $\mathcal S$ into non-crossing collections $\mathcal S_1,\dots,\mathcal S_k$
- 4. Take central bags β_1, \ldots, β_k for the collections S_1, \ldots, S_k
- 5. β_k contains no forcers in , so β_k has a nice structure
- 6. Use the nice structure of β_k to draw conclusions about the structure of G

The End

Questions?