Even-hole-free graphs with bounded degree have bounded treewidth

Tara Abrishami, with Maria Chudnovsky and Kristina Vušković GRAA online seminar, September 2020

Introduction

G is even-hole-free if G does not have an induced cycle of even length.

Conjecture (Aboulker, Adler, Kim, Sintiari, Trotignon). Even-hole-free graphs with bounded degree have bounded treewidth.

Tree decompositions

A tree decomposition (T,χ) of a graph G is a tree T and a map $\chi:V(T)\to 2^{V(G)}$, such that

- 1. for all $v \in V(G)$, there exists $t \in V(T)$ such that $v \in \chi(t)$
- 2. for all $v_1v_2 \in E(G)$, there exists $t \in V(T)$ such that $v_1, v_2 \in \chi(t)$
- 3. for all $v \in V(G)$, the set $\{t \in V(T) : v \in \chi(t)\}$ induces a connected subtree of T

The width of (T, χ) is $\max_{t \in V(T)} |\chi(t)| - 1$.

The treewidth of G is the minimum width of a tree decomposition of G.

Treewidth example

Tree decomposition (T, χ) :

T :

$$\chi(a) = \langle 2, 5, 4 \rangle$$

$$\chi(b) = \langle 2, 3, 4 \rangle$$

$$\chi(c) = \langle 2, 1, 5 \rangle$$

$(k, S, c)^*$ -separators

A set $X \subseteq V(G)$ is a $(k, S, c)^*$ -separator if

- $|X| \leq k$
- every component of $G \setminus X$ has at most c|S| vertices of S

 $\operatorname{sep}_c^*(G) := \min k \operatorname{such} \operatorname{that} G \operatorname{has} \operatorname{a} (k, S, c)^*$ -separator for every $S \subseteq V(G)$

Theorem (Harvey, Wood)

For all $c \in [\frac{1}{2}, 1)$,

$$sep_c^*(G) \leq tw(G) + 1 \leq \frac{1}{1-c}sep_c^*(G).$$

(w, c, d)-balanced separators

A set Y is d-bounded if there exists $v_1, \ldots, v_d \in V(G)$ such that $Y \subseteq N^d[v_1] \cup \ldots \cup N^d[v_d]$

$$V_1 \circ \bigcup_{i=1}^{\infty} \bigcup_{N^2(V_i)} \dots \bigcup_{N^d(V_i)} = 1 + \delta + \delta^2 + \dots + \delta^d$$

6

A set $Y \subseteq V(G)$ is a (w, c, d)-balanced separator if

- Y is d-bounded
- $w(Z) \le c$ for every component Z of $G \setminus Y$ max possible size of d-bounded set

Lemma

Let δ,d be positive integers, let $c\in [\frac{1}{2},1)$, let $\Delta=d+\delta d+\ldots+\delta^d d$. Let G be a graph with maximum degree δ . Suppose that for all $w:V(G)\to [0,1]$ such that w(G)=1 and $w^{\max}<\frac{1}{\Delta}$, G has a (w,c,d)-balanced separator. Then, $tw(G)\leq \frac{1}{1-c}\Delta$.

(w, c, d)-balanced separators

Proof.

Want to show that G has a $(\Delta, S, c)^*$ -separator for every $S \subseteq V(G)$.

- If $|S| \leq \Delta$, then S is a $(\Delta, S, c)^*$ -separator of G.
- If $|S| > \Delta$, let $w_S : V(G) \rightarrow [0,1]$ be such that

$$w_{S}(v) = \begin{cases} \frac{1}{|S|} & v \in S \\ 0 & v \notin S \end{cases}$$

(w, c, d)-balanced separators

Proof (continued)

Then, $w_S^{max} < \frac{1}{\Delta}$, so G has a $(w_S c, d)$ -balanced separator Y.

- Let Z be a component of $G \setminus Y$. Since $w_S(Z) \le c$, it follows that Z has at most c|S| vertices of S
- $|Y| \leq \Delta$

So, Y is a $(\Delta, S, c)^*$ -separator of G.

To prove bounded treewidth, we focus on finding (w, c, d)-balanced separators.

a

Separations

A separation of G is a triple (A, C, B) such that

- A, C, B are disjoint
- $A \cup C \cup B = V(G)$
- A is anticomplete to B

Every edge of a tree decomposition (T, χ) of G corresponds to a separation (A, C, B) of G.

Separations and tree decompositions

$$C = \chi(f') \cup \chi(f^5)$$

$$A = \bigcup_{t \in T_i} \chi(t) \setminus C$$

$$B = \bigcup_{t \in T_2} \chi(t) \setminus C$$

 \underline{Pf} : Suppose $u \in A$, $\in B$, $vv \in E(G)$.

- · It s.t. u, ve X(t)
- · if teT, vex(t)nx(t2)
- · if teTz, ue x(ta) n x(t2)

Laminar collections

Two separations $S_1 = (A_1, C_1, B_1)$ and $S_2 = (A_2, C_2, B_2)$ are non-crossing if, up to symmetry,

- $A_1 \cup C_1 \subseteq A_2 \cup C_2$
- $B_2 \cup C_2 \subseteq B_1 \cup C_1$

A collection ${\cal S}$ of separations is **laminar** if every pair of separations in ${\cal S}$ is non-crossing.

Theorem (Robertson, Seymour)

If $\mathcal S$ is a collection of laminar separations of G, then there exists a tree decomposition (T,χ) such that there is a one-to-one correspondence between edges of T and separations in $\mathcal S$

Star separations

Star separation: (A, C, B) such that $C \subseteq N[K]$ for some clique K Let $c \in [\frac{1}{2}, 1)$. We may assume that if (A, C, B) is a star separation of G, then:

- B is connected
- w(A) < 1 c

$$B: largest connected component of $G/N[k]$$$

Central bag

Suppose S is a laminar collection of separations and (T_S, χ_S) is the tree decomposition corresponding to S. Then, there is a bag $\beta = \chi(t_0)$ such that:

- (1) If $(A, C, B) \in \mathcal{S}$, then $\beta \cap A = \emptyset$
- (2) $G[\beta]$ does not have a (w',c,d')-balanced separator

We call β the **central bag**

Central bag

1)
$$e_i \Rightarrow (A_i, C_i, B_i)$$
, with $C_i \subseteq N^2[v_i]$
2) $N(A_i) \cap B \subseteq C_i$

$$W': V(B) \rightarrow [0,1], \quad s.t.$$

$$W'(V) = \begin{cases} w(V_i) + w(A_i) & \text{if } V \in \langle V_1, ..., V_k \rangle \\ w(V) & \text{otherwise} \end{cases}$$

$$\cdot W'(B) = w(G) = 1$$

Claim: If B has a (w',c,d-2)-balanced separator Y, then $N^2[Y]$ is a (w,c,d)-balanced separator of G

Central bag

Components of
$$G/N^2[Y]$$
:
$$-Q_{i}U(\bigcup_{j'\in G_{i}}A_{j'})/N^2[Y] = Z_{i}$$

$$-A_{i} \quad \text{s.t.} \quad V_{i} \in Y$$

- 1) Z; is anticomplete to Z_j . Edge xy means $y \in C_1$, so $y \in \mathbb{N}^2[v_i]$ There is a path $v_i - u - y_j$ with $u \in Y$. But then $y \in \mathbb{N}^2[Y]$.
- 2) If $v_i \in Y$, then $N(A_i) \subseteq N^2[Y]$. $N(A_i) \subseteq C_i$, $C_i \subseteq N^2[v_i]$ $N^2[v_i] \subseteq N^2[Y$

Proof outline

The central bag β for $\mathcal S$ has two important properties:

- ullet eta does not have a (w',c,d')-balanced separator
- ullet eta is "simpler" than G

because
$$\beta \wedge A = \phi$$
 for all $(A,C,B) \in S$.

Forcers

Which separations are important for even-hole-free graphs?

- star cutsets: $C \subseteq N[v]$ for some $v \in V(G)$
- double star cutsets: $C \subseteq N[u] \cup N[v]$ for some $uv \in E(G)$

A forcer F = (H, K) is a hole H and a clique K of size one or two such that N[K] is a star cutset or a double star cutset of G.

Forcers

There are three types of forcers in even-hole-free graphs:

- 1. $F = (H, \{x\})$ where (H, x) is a proper wheel
- 2. $F = (H, \{x\})$ where (H, x) is a twin wheel
- 3. $F = (H, \{x, y\})$, where (H, x) is a short pyramid

Forcer example

Lemma: N(x) v N(y) is a cutset of G that separater S1 from S2.

Note: F touches two connected comps of G/(N(X)) N(Y)).

Let (A,C,B) be the separation induced by F, so C=N(x)UN(y).

B is connected \Rightarrow FAA $\neq \emptyset$.

Forcers and separations

Lemma

Let F be a forcer and let (A_F, C_F, B_F) be the star separation induced by F. Then, $F \cap A_F \neq \emptyset$.

Recall that if β is the central bag for a laminar collection of separations S, then $\beta \cap A = \emptyset$ for all $(A, C, B) \in S$. Therefore:

• If $(A_F, C_F, B_F) \in \mathcal{S}$ and β is the central bag for \mathcal{S} , then β does not contain F.

Forcers and bounded treewidth

Theorem

Let G be an even-hole-free graph with maximum degree δ and no forcers. Then, G does not have a star cutset.

Theorem

Let G be an even-hole-free graph with maximum degree δ and no star cutset. Then, G has a (w, c, d)-balanced separator.

$$\Rightarrow$$
 If G has no forcers, then G has a (w_1c_1d) -balanced separator

Proof Sketch

Proof sketch:

- 1. Let \mathcal{F} be all forcers of G and let \mathcal{S} be the set of separations induced by forcers of G.
- 2. Use S to find an induced subgraph β of G such that β does not contain any forcer in F.
- 3. Then, β has a (w', c, d')-balanced separator
- 4. Therefore, G has a (w, c, d)-balanced separator
- 4 What if S is not laminar?

Separation dimension

Lemma

Let $S_1 = (A_1, C_1, B_1)$ and $S_2 = (A_2, C_2, B_2)$ be two star separations with $C_1 \subseteq N[K_1]$ and $C_2 \subseteq N[K_2]$. If K_1 is anticomplete to K_2 , then S_1 and S_2 are non-crossing.

Because G has bounded maximum degree, we can partition S into a bounded number of laminar collections.

Separation dimension of S: the min k such that S can be partitioned into k laminar collections

Proof Sketch

Proof sketch:

- 1. Let \mathcal{F} be the set of all forcers in G.
- 2. Can partition \mathcal{F} into $k = f(\delta)$ sets $\mathcal{F}_1, \ldots, \mathcal{F}_k$, such that the collection of separations \mathcal{S}_i is laminar.
- 3. Find β_1 , the central bag for S_1 . Then:
 - β_1 does not have any forcers in \mathcal{F}_1
 - β_1 does not have a (w_1, c, d_1) -balanced separator

Proof Sketch

- 4. Iteratively find β_i , the central bag for S_i restricted to β_{i-1} . Then:
 - β_i does not have any forcers in $\mathcal{F}_1, \ldots, \mathcal{F}_i$
 - β_i does not have a (w_i, c, d_i) -balanced separator
- 5. Finally, β_k does not have any forcers, and β_k does not have a (w_k, c, d_k) -balanced separator.
- 6. Because β_k does not have any forcers, β_k has a (w_k, c, d_k) -balanced separator.

_

Key Ideas

Key ideas:

- 1. Can find a **central bag** β such that β has lower dimension than G and β has a (w', c, d')-balanced separator only if G has a (w, c, d)-balanced separator
- 2. Can find **forcers** that induce bounded separations in *G*
- Bounded degree means separations can be partitioned into a bounded number of laminar collections
- 4. Graphs with no forcers are "simple," so we can prove properties of graphs with no forcers

Thank you!

Questions?